The purpose of this paper is to investigate the moving window rule of classification to classify functions under mixing conditions. We consider a random variable taking values in a metric space with label . We extend some results on consistency and strong consistency of the moving window rule from the i.i.d. case to the weakly dependent case under mild assumptions. The practical use of the moving window rule will be illustrated through a simulation study. The performance of the moving window rule is investigated.
Keywords: Bayes rule, training data, moving window rule, mixing condition, consistency
Younso, Ahmad 1
@article{PS_2017__21__452_0,
author = {Younso, Ahmad},
title = {On nonparametric classification for weakly dependent functional processes},
journal = {ESAIM: Probability and Statistics},
pages = {452--466},
year = {2017},
publisher = {EDP Sciences},
volume = {21},
doi = {10.1051/ps/2017002},
mrnumber = {3743922},
zbl = {1395.62095},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2017002/}
}
TY - JOUR AU - Younso, Ahmad TI - On nonparametric classification for weakly dependent functional processes JO - ESAIM: Probability and Statistics PY - 2017 SP - 452 EP - 466 VL - 21 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2017002/ DO - 10.1051/ps/2017002 LA - en ID - PS_2017__21__452_0 ER -
Younso, Ahmad. On nonparametric classification for weakly dependent functional processes. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 452-466. doi: 10.1051/ps/2017002
, and , On the kernel rule for function classification. Ann. Inst. Statist. Math. 58 (2006) 619–633. | MR | Zbl | DOI
H.C.P. Berbee, Random walks with stationary increments and renewal theory. Math. Cent. Tract. Amsterdam (1979). | MR | Zbl
, and , Functional supervised classification with wavelets. Ann. l’ISUP 52 (2008) 61–80. | MR
, and , Autoregressive forecasting of some functional climatic variations. Scand. J. Statist. 27 (2000) 673–687. | Zbl | DOI
D. Bosq, Nonparametric Statistics for Stochastic Processes. Springer Verlag, New York (1998). | MR | Zbl
, Approximations theorems for strongly mixing random variables. Michigan Math. J. 30 (1983) 69–81. | MR | Zbl | DOI
and , Nearest neighbor classification in infinite dimension. ESAIM: PS 10 (2006) 340–355. | MR | Zbl | Numdam | DOI
S. Dabo-Niang and F. Ferraty, Functional and Operatorial Statistics. Physica Verlag, Springer, Heidelberg (2008). | MR | Zbl
and , The inclusion of exogenous variables in functional autoregressive ozone forecasting. Environmetrics 13 (2002) 759–774. | DOI
L. Devroye, L. Györfi and G. Lugosi, A probabilitic Theory of Pattern Recognition. Springer Verlag, New York (1996). | MR | Zbl
and , An equivalence theorem for L convergence of the kernel regression estimate. J. Stat. Plan. Inference 23 (1989) 71–82. | MR | Zbl | DOI
, and , The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Statist. 30 (1994) 63–82. | MR | Zbl | Numdam
, and , Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincaré Probab. Statist. 31 (1995) 393–427. | MR | Zbl | Numdam
M. Febrero−Bande and M. Oviedo de la Fuente, Statistical computing in functional data analysis: The R package fda.usc. J. Statist. Software 51 (2012).
F. Ferraty and P. Vieu, The functional nonparametric model and application to spectrometric data. Comput. Statist. (2002) 17–564. | MR | Zbl
and , Curves discrimination: A nonparametric functional approach. Comput. Statist. Data Anal. 44 (2003) 161–173. | MR | Zbl | DOI
F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Springer Verlag, New York (2006). | MR | Zbl
and , Additive prediction and boosting for functional data. Comput. Statist. Data Anal. 53 (2009) 1400–1413. | MR | Zbl | DOI
, and , Nonparametric estimation of the mode of a distribution of random curves. J. Roy. Statist. Soc. 60 (1998) 681–691. | MR | Zbl | DOI
, and , Classification problems based on regression models for multi-dimensional functional data. Stat. Trans. New Series 16 (2015) 97–110. | DOI
, and , A functional data-analytic approach to signal discrimination. Technometrics 43 (2001) 140–143. | MR | Zbl | DOI
and , Weakly dependent functional data. Ann. Statist. 38 (2010) 1845–1884. | MR | Zbl | DOI
A.S. Kechris, Classical descriptive set theory. Springer Verlag, New York (1995). | MR | Zbl
and , -entropy and -capacity of sets in functional spaces. Amer. Math. Soc. Transl. 17 (1961) 277–364. | MR | Zbl
, Functional regression in short-term prediction of economic time series. Stat. Trans. New Series 15 (2014) 611–626.
and , Rate of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans. Inform. Theory 41 (1995) 1028–1039. | MR | Zbl | DOI
, On estimating regression. Theory Probab. Appl. 9 (1964) 141–142. | DOI
, On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065–1076. | MR | Zbl | DOI
and , Nonparametric regression for functional data: automatic smoothing parameter selection. J. Statist. Plan. Inference 137 (2007) 2784–2801. | MR | Zbl | DOI
J.O. Ramsay, G. Hooker and S. Graves, Functional Data Analysis with R and Matlab. Springer Verlag, New York (2009). | Zbl
J.O. Ramsay and B.W. Silverman, Applied Functional Data Analysis. Methods and Case Sudies. Springer Verlag, New York (2002). | MR
J.O. Ramsay and B.W. Silverman, Functional Data Analysis. Springer Verlag, New York (1997). | MR | Zbl
and , Estimating the mean and covariance structure nonparametrically when the data are curves. Roy. Statist. Soc. 53 (1991) 233–243. | MR | Zbl
E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer Verlag, Berlin Heidelberg (2000). | MR | Zbl
, A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci., USA 42 (1956) 43–47. | MR | Zbl | DOI
, Consistent nonparametric regression. Ann. Statist. 5 (1977) 595–620. | MR | Zbl | DOI
, Spatial regression estimation for functional data with spatial dependency. J. Soc. Française Statist. 155 (2014) 138–160. | MR | Zbl | Numdam
, Inequalities for absolutely sequence. Application to density estimation. Probab. Theory Relat. Fields 107 (1997) 467–492. | MR | Zbl | DOI
, Smooth regression analysis. Sankhya Ser. A 26 (1964) 359–372. | MR | Zbl
Cité par Sources :






