As a starting point we prove a functional central limit theorem for estimators of the invariant measure of a geometrically ergodic Harris-recurrent Markov chain in a multi-scale space. This allows to construct confidence bands for the invariant density with optimal (up to undersmoothing) -diameter by using wavelet projection estimators. In addition our setting applies to the drift estimation of diffusions observed discretely with fixed observation distance. We prove a functional central limit theorem for estimators of the drift function and finally construct adaptive confidence bands for the drift by using a completely data-driven estimator.
Accepté le :
DOI : 10.1051/ps/2016017
Keywords: Adaptive confidence bands, diffusion, drift estimation, ergodic Markov chain, stationary density, Lepski’s method, functional central limit theorem
Söhl, Jakob 1 ; Trabs, Mathias 2
@article{PS_2016__20__432_0,
author = {S\"ohl, Jakob and Trabs, Mathias},
title = {Adaptive confidence bands for {Markov} chains and diffusions: {Estimating} the invariant measure and the drift},
journal = {ESAIM: Probability and Statistics},
pages = {432--462},
year = {2016},
publisher = {EDP Sciences},
volume = {20},
doi = {10.1051/ps/2016017},
zbl = {1357.62198},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2016017/}
}
TY - JOUR AU - Söhl, Jakob AU - Trabs, Mathias TI - Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift JO - ESAIM: Probability and Statistics PY - 2016 SP - 432 EP - 462 VL - 20 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2016017/ DO - 10.1051/ps/2016017 LA - en ID - PS_2016__20__432_0 ER -
%0 Journal Article %A Söhl, Jakob %A Trabs, Mathias %T Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift %J ESAIM: Probability and Statistics %D 2016 %P 432-462 %V 20 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2016017/ %R 10.1051/ps/2016017 %G en %F PS_2016__20__432_0
Söhl, Jakob; Trabs, Mathias. Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 432-462. doi: 10.1051/ps/2016017
and , Exponential concentration inequalities for additive functionals of Markov chains. ESAIM: PS 19 (2015) 440–481. | Zbl | Numdam | DOI
Y. Aït-Sahalia, Econometrics of Diffusion Models. John Wiley & Sons, Ltd. (2010).
, and , Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 (2008) 727–759. | Zbl | DOI
R.F. Bass, Diffusions and elliptic operators. Springer, New York (1998). | Zbl
, Honest adaptive confidence bands and self-similar functions. Electron. J. Stat. 6 (2012) 1490–1516. | Zbl
and , On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 (1986) 179–193. | Zbl | DOI
and , Nonparametric Bernstein–von Mises theorems in Gaussian white noise. Ann. Statist. 41 (2013) 1999–2028. | Zbl | DOI
and , On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures. Ann. Statist. 42 (2014) 1941–1969. | Zbl | DOI
and , Estimation of the asymptotic variance in the CLT for Markov chains. Stoch. Models 19 (2003) 449–465. | Zbl | DOI
, Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139 (1999) 664. | Zbl
, and , Anti-concentration and honest, adaptive confidence bands. Ann. Statist. 42 (2014) 1787–1818. | Zbl | DOI
and , Spectral estimation for diffusions with random sampling times. Stochastic Process. Appl. 126 (2016) 2976–3008. | Zbl | DOI
, and , Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13 (2007) 514–543. | Zbl | DOI
, Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Statist. 33 (2005) 2507–2528. | Zbl | DOI
and , Geometric ergodicity for classes of homogeneous Markov chains. Stochastic Process. Appl. 124 (2014) 3362–3391. | Zbl | DOI
, Practical Markov chain Monte Carlo. Stat. Sci. 7 (1992) 473–483.
I.I. Gihman and A.V. Skorohod, Stochastic differential equations. Springer, Heidelberg (1972). | Zbl
and , Confidence bands in density estimation. Ann. Statist. 38 (2010) 1122–1170. | Zbl | DOI
E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistical models. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2015).
, and , Nonparametric estimation of scalar diffusions based on low frequency data. Ann. Statist. 32 (2004) 2223–2253. | Zbl | DOI
and , Nonparametric Bayesian drift estimation for multidimensional stochastic differential equations. Lith. Math. J. 54 (2014) 127–141. | Zbl | DOI
and , Back to the future: generating moment implications for continuous-time Markov processes. Econometrica 63 (1995) 767–804. | Zbl | DOI
, and , Spectral methods for identifying scalar diffusions. J. Econom. 86 (1998) 1–32. | Zbl | DOI
W. Härdle, G. Kerkyacharian, D. Picard and A.Tsybakov, Wavelets, approximation, and statistical applications. Vol. 129 of Lecture Notes in Statistics. Springer-Verlag, New York (1998). | Zbl
, Adaptive estimation in diffusion processes. Stochastic Process. Appl. 79 (1999) 135–163. | Zbl | DOI
and , On adaptive inference and confidence bands. Ann. Statist. 39 (2011) 2383–2409. | Zbl | DOI
, Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models. J. Econom. 156 (2010) 239–259. | Zbl | DOI
Y.A. Kutoyants, Statistical inference for ergodic diffusion processes. Springer Series in Statistics. Springer-Verlag London, Ltd., London (2004). | Zbl
, Nonparametric estimation of the stationary density and the transition density of a Markov chain. Stochastic Process. Appl. 118 (2008) 232–260. | Zbl | DOI
M. Ledoux, The concentration of measure phenomenon. Vol. 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2001). | Zbl
, and , Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process. ESAIM: PS 15 (2011) 197–216. | Zbl | DOI
, On nonparametric confidence intervals. Ann. Statist. 25 (1997) 2547–2554. | Zbl
, and , Goodness-of-fit test for ergodic diffusions by discrete-time observations: an innovation martingale approach. J. Nonparametr. Stat. 23 (2011) 237–254. | Zbl | DOI
S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Cambridge University Press, Cambridge (2009). | Zbl
and , Goodness of fit test for ergodic diffusions by tick time sample scheme. Stat. Inference Stoch. Process. 13 (2010) 81–95. | Zbl | DOI
R. Nickl and J. Söhl, Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. To appear in Ann. Statist. (2016).
, Convergence control methods for Markov chain Monte Carlo algorithms. Statistical Science 10 (1995) 231–253. | Zbl | DOI
M. Rosenblatt, Density estimates and Markov sequences. In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969). Cambridge Univ. Press, London (1970) 199–213.
, Nonparametric estimation in Markov processes. Ann. Inst. Statist. Math. 21 (1969) 73–87. | Zbl | DOI
, Nonparametric estimation of the derivatives of the stationary density for stationary processes. ESAIM: PS 17 (2013) 33–69. | Zbl | Numdam | DOI
, Adaptive drift estimation for nonparametric diffusion model. Ann. Statist. 28 (2000) 815–836. | Zbl | DOI
, and , Frequentist coverage of adaptive nonparametric Bayesian credible sets (with discussion). Ann. Statist. 43 (2015) 1391–1428. | Zbl
H. Triebel, Theory of function spaces. Vol. 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel (1983). | Zbl
and , Consistent nonparametric Bayesian inference for discretely observed scalar diffusions. Bernoulli 19 (2013) 44–63. | Zbl | DOI
and , Donsker theorems for diffusions: necessary and sufficient conditions. Ann. Probab. 33 (2005) 1422–1451. | Zbl | DOI
A. W. van der Vaart, Asymptotic statistics. Vol. 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998). | Zbl
, Nonparametric density and regression estimation for Markov sequences without mixing assumptions. J. Multivariate Anal. 30 (1989) 124–136. | Zbl | DOI
Cité par Sources :





