Bifractional Brownian motion (bfBm) is a centered Gaussian process with covariance
We study the existence of bfBm for a given pair of parameters and encounter some related limiting processes.
Keywords: Bifractional Brownian motion, Gaussian process, fractional Brownian motion
Lifshits, Mikhail 1, 2 ; Volkova, Ksenia 1
@article{PS_2015__19__766_0,
author = {Lifshits, Mikhail and Volkova, Ksenia},
title = {Bifractional {Brownian} motion: existence and border cases},
journal = {ESAIM: Probability and Statistics},
pages = {766--781},
year = {2015},
publisher = {EDP Sciences},
volume = {19},
doi = {10.1051/ps/2015015},
zbl = {1333.60075},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2015015/}
}
TY - JOUR AU - Lifshits, Mikhail AU - Volkova, Ksenia TI - Bifractional Brownian motion: existence and border cases JO - ESAIM: Probability and Statistics PY - 2015 SP - 766 EP - 781 VL - 19 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2015015/ DO - 10.1051/ps/2015015 LA - en ID - PS_2015__19__766_0 ER -
%0 Journal Article %A Lifshits, Mikhail %A Volkova, Ksenia %T Bifractional Brownian motion: existence and border cases %J ESAIM: Probability and Statistics %D 2015 %P 766-781 %V 19 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2015015/ %R 10.1051/ps/2015015 %G en %F PS_2015__19__766_0
Lifshits, Mikhail; Volkova, Ksenia. Bifractional Brownian motion: existence and border cases. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 766-781. doi: 10.1051/ps/2015015
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. Dover Publ., New York (1972).
and , An extension of bifractional Brownian motion. Commun. Stoch. Anal. 5 (2011) 333–340. | Zbl
and , Stationary and selfsimilar processes driven by Lévy processes. Stochastic Processes Appl. 84 (1999) 357–369. | Zbl
, and , Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron. Commun. Probab. 12 (2007) 161–172. | Zbl
, and , Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8 (2003) 1–14. | Zbl
and , Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres. ESAIM: PS 16 (2012) 165–221. | Zbl
D.S. Egorov, Annual student’s memoir. St. Petersburg State University (2014).
P. Embrechts and M. Maejima, Selfsimilar Processes. Princeton University Press (2002). | Zbl
and , An example of infinite dimensional quasi-helix. Stochastic Models. Ser.: Contemp. Math. 336 (2003) 195–201. | Zbl
and , A decomposition of the bifractional Brownian motion and some applications. Stat. Probab. Lett. 79 (2009) 619–624. | Zbl
M. Lifshits, Random Processes by Example. World Scientific, Singapore (2014). | Zbl
M. Lifshits and K. Volkova, Bifractional Brownian motion: existence and border cases. Preprint arXiv:1502.02217 (2015).
M.A. Lifshits, R. Schilling and I. Tyurin, A probabilistic inequality related to negative definite functions, in High Dimensional Probability VI, Vol. 66 of Ser. Progress in Probability, edited by C. Houdré et al. Birkhäuser, Basel. Preprint: arXiv:1205.1284 (2013). | Zbl
, The Schoenberg–Lévy kernel and relationships among fractional Brownian motion, bifractional Brownian motion and others. Theory Probab. Appl. 57 (2013) 619–632. | Zbl
, Micropulses and different types of Brownian motion. J. Appl. Probab. 48, (2011) 792–810. | Zbl
, and , Bernstein Functions. De Gruyter, Berlin. Stud. Math. (2010) 37. | Zbl
G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman & Hall, New York (1994). | Zbl
and , Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007) 1023–1052. | Zbl
, On -variation of bifractional Brownian motion. Appl. Math. J. Chinese Univ. 26 (2011) 127–141. | Zbl
Cité par Sources :






