In this paper, we address the issue of estimating the parameters of general multivariate copulas, that is, copulas whose partial derivatives may not exist. To this aim, we consider a weighted least-squares estimator based on dependence coefficients, and establish its consistency and asymptotic normality. The estimator’s performance on finite samples is illustrated on simulations and a real dataset.
DOI : 10.1051/ps/2015014
Keywords: Partial derivatives, singular component, weighted least-squares, method of moments, dependence coefficients, parametric inference, multivariate copulas
Mazo, Gildas 1 ; Girard, Stéphane 1 ; Forbes, Florence 1
@article{PS_2015__19__746_0,
author = {Mazo, Gildas and Girard, St\'ephane and Forbes, Florence},
title = {Weighted least-squares inference for multivariate copulas based on dependence coefficients},
journal = {ESAIM: Probability and Statistics},
pages = {746--765},
year = {2015},
publisher = {EDP Sciences},
volume = {19},
doi = {10.1051/ps/2015014},
zbl = {1392.62157},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2015014/}
}
TY - JOUR AU - Mazo, Gildas AU - Girard, Stéphane AU - Forbes, Florence TI - Weighted least-squares inference for multivariate copulas based on dependence coefficients JO - ESAIM: Probability and Statistics PY - 2015 SP - 746 EP - 765 VL - 19 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2015014/ DO - 10.1051/ps/2015014 LA - en ID - PS_2015__19__746_0 ER -
%0 Journal Article %A Mazo, Gildas %A Girard, Stéphane %A Forbes, Florence %T Weighted least-squares inference for multivariate copulas based on dependence coefficients %J ESAIM: Probability and Statistics %D 2015 %P 746-765 %V 19 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2015014/ %R 10.1051/ps/2015014 %G en %F PS_2015__19__746_0
Mazo, Gildas; Girard, Stéphane; Forbes, Florence. Weighted least-squares inference for multivariate copulas based on dependence coefficients. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 746-765. doi: 10.1051/ps/2015014
, Copula goodness-of-fit testing: an overview and power comparison. Eur. J. Finance 15 (2009) 675–701.
, , and , New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann. Statist. 39 (2011) 1963–2006. | Zbl
, and , When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs. Ann. Stat. 42 (2014) 1598–1634. | Zbl
, and , A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84 (1997) 567–577. | Zbl
S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer (2001). | Zbl
and , A continuous general multivariate distribution and its properties. Commun. Stat. – Theory Methods 10 (1981) 339–353. | Zbl
, On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Stat. Probab. Lett. 12 (1991) 429–439. | Zbl
and , On the construction of multivariate extreme value models via copulas. Environmetrics 21 (2010) 143–161.
F. Durante and C. Sempi, Copula Theory: An Introduction. In Copula Theory and Its Applications. Springer (2010) 3–31.
, and , An M-estimator for tail dependence in arbitrary dimensions. Ann. Stat. 40 (2012) 1764–1793. | Zbl
, Nonparametric estimation of the tail-dependence coefficient. REVSTAT–Stat. J. 11 (2013) 1–16. | Zbl
, Remarques au sujet de la note précédente. C. R. Acad. Sci. Paris Sér. I Math. 246 (1958) 2719–2720. | Zbl
and , Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 (1993) 1034–1043. | Zbl
and , Test of independence and randomness based on the empirical copula process. Test 13 (2004) 335–369. | Zbl
and , Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12 (2007) 347–368.
and , Rank-based inference for bivariate extreme-value copulas. Ann. Stat. 37 (2009) 2990–3022. | Zbl
, and , A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. | Zbl
, and , Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics 44 (2009) 199–213. | Zbl
, and , Estimators based on Kendall’s tau in multivariate copula models. Australian & New Zealand J. Stat. 53 (2011) 157–177. | Zbl
G. Gudendorf and J. Segers, Extreme-value Copulas. In Copula Theory and Its Applications Springer (2010) 127–145.
and , Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6 (2000) 835–844. | Zbl
, Large sample properties of generalized method of moments estimators. Econometrica 50 (1982) 1029–1054. | Zbl
, A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 (1948) 293–325. | Zbl
H. Joe, Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, Boca Raton, FL (2001). | Zbl
and , Copula structure analysis. J. R. Statist. Soc. B 71 (2009) 737–753. | Zbl
and , A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat. Comput. 21 (2011) 17–30. | Zbl
and , Factor copula models for multivariate data. J. Multivariate Anal. 120 (2013) 85–101. | Zbl
G. Mazo, S. Girard and F. Forbes, A flexible and tractable class of one-factor copulas. To appear in Stat. Comput. (2015) . | DOI
R.B. Nelsen, An Introduction to Copulas. Springer (2006). | Zbl
, , and , Kendall distribution functions. Stat. Probab. Lett. 65 (2003) 263–268. | Zbl
and , Simulated method of moments estimation for copula-based multivariate models. J. Am. Stat. Assoc. 108 (2013) 689–700. | Zbl
, Multivariate Extreme Value Distributions. Proc. of the 43rd Session of the International Statistical Institute 2 (1981) 859–878. | Zbl
J.R. Schott, Matrix analysis for statistics. Wiley (2005). | Zbl
, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 (2012) 764–782. | Zbl
, Semiparametric estimation in copula models. The Canadian Journal of Statistics / La Revue Canadienne de Statistique 33 (2005) 357–375. | Zbl
A.W. Van der Vaart, Asymptotic Statistics. Cambridge University Press 3 (2000). | Zbl
Cité par Sources :






