We consider dependence coefficients for stationary Markov chains. We emphasize on some equivalencies for reversible Markov chains. We improve some known results and provide a necessary condition for Markov chains based on Archimedean copulas to be exponential ρ-mixing. We analyse the example of the Mardia and Frechet copula families using small sets.
Keywords: Markov chains, copula, mixing, reversible processes, ergodicity, small sets
@article{PS_2014__18__570_0,
author = {Longla, Martial},
title = {On dependence structure of copula-based {Markov} chains},
journal = {ESAIM: Probability and Statistics},
pages = {570--583},
year = {2014},
publisher = {EDP Sciences},
volume = {18},
doi = {10.1051/ps/2013052},
zbl = {1308.60087},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2013052/}
}
TY - JOUR AU - Longla, Martial TI - On dependence structure of copula-based Markov chains JO - ESAIM: Probability and Statistics PY - 2014 SP - 570 EP - 583 VL - 18 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2013052/ DO - 10.1051/ps/2013052 LA - en ID - PS_2014__18__570_0 ER -
Longla, Martial. On dependence structure of copula-based Markov chains. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 570-583. doi: 10.1051/ps/2013052
[1] , Archimedean copulas and temporal dependence. Econ. Theory 28 (2012) 1165-1185. | Zbl | MR
[2] , Copulas and Temporal Dependence. Econometrica 78 (2010) 395-410. | Zbl | MR
[3] , Introduction to strong mixing conditions. Vol. 1, 2. Kendrick press (2007). | Zbl | MR
[4] and , Chaos: A Statistical Perspective. Springer, New York (2001). | Zbl | MR
[5] , and , The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré, Section B, Tome 30 (1994) 63-82. | Zbl | MR | Numdam
[6] and , Some Aspects of Modeling Dependence in Copula-based Markov chains. J. Multiv. Anal. 111 (2012) 234-240. | Zbl | MR
[7] , Remarks on the speed of convergence of mixing coefficients and applications. Stat. Probab. Lett. 82 (2013) 2439-2445. | MR
[8] , An introduction to copulas. 2nd edition. Springer, New York (2006). | Zbl | MR
Cité par Sources :





