We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares since this sum is often used for estimating the long-memory parameter. We show that the limit is not Gaussian but can be expressed using the non-Gaussian Rosenblatt process defined as a Wiener-Itô integral of order 2. This happens even if the original process is defined through a Hermite polynomial of order higher than 2.
Keywords: Hermite processes, wavelet coefficients, wiener chaos, self-similar processes, long-range dependence
@article{PS_2014__18__42_0,
author = {Clausel, M. and Roueff, F. and Taqqu, M. S. and Tudor, C.},
title = {Wavelet estimation of the long memory parameter for {Hermite} polynomial of gaussian processes},
journal = {ESAIM: Probability and Statistics},
pages = {42--76},
year = {2014},
publisher = {EDP Sciences},
volume = {18},
doi = {10.1051/ps/2012026},
mrnumber = {3143733},
zbl = {1310.42023},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2012026/}
}
TY - JOUR AU - Clausel, M. AU - Roueff, F. AU - Taqqu, M. S. AU - Tudor, C. TI - Wavelet estimation of the long memory parameter for Hermite polynomial of gaussian processes JO - ESAIM: Probability and Statistics PY - 2014 SP - 42 EP - 76 VL - 18 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2012026/ DO - 10.1051/ps/2012026 LA - en ID - PS_2014__18__42_0 ER -
%0 Journal Article %A Clausel, M. %A Roueff, F. %A Taqqu, M. S. %A Tudor, C. %T Wavelet estimation of the long memory parameter for Hermite polynomial of gaussian processes %J ESAIM: Probability and Statistics %D 2014 %P 42-76 %V 18 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2012026/ %R 10.1051/ps/2012026 %G en %F PS_2014__18__42_0
Clausel, M.; Roueff, F.; Taqqu, M. S.; Tudor, C. Wavelet estimation of the long memory parameter for Hermite polynomial of gaussian processes. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 42-76. doi: 10.1051/ps/2012026
[1] and , Wavelet-based synthesis of the Rosenblatt process. Eurasip Signal Processing 86 (2006) 2326-2339. | Zbl
[2] and , Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inform. Theory 44 (1998) 2-15. | Zbl | MR
[3] , and , Long-range dependence: revisiting aggregation with wavelets. J. Time Ser. Anal. 19 (1998) 253-266. ISSN 0143-9782. | Zbl | MR
[4] , and , Wavelet-based analysis of non-Gaussian long-range dependent processes and estimation of the Hurst parameter. Lithuanian Math. J. 51 (2011) 287-302. | Zbl | MR
[5] , Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans. Inform. Theory 48 (2002) 991-999. | Zbl | MR
[6] and , A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stochastic Process. Appl. 120 (2010) 2331-2362. | Zbl | MR
[7] , , and , Wavelet estimator of long-range dependent processes. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). Stat. Inference Stoch. Process. 3 (2000) 85-99. | Zbl | MR
[8] , and , Adaptive wavelet based estimator of the memory parameter for stationary gaussian processes. Bernoulli 14 (2008) 691-724. | Zbl | MR
[9] and , Error bounds on the non-normal approximation of hermite power variations of fractional brownian motion. Electron. Commun. Probab. 13 (2008) 482-493. | Zbl | MR | EuDML
[10] , and , Self-similarity parameter estimation and reproduction property for non-gaussian Hermite processes. Commun. Stoch. Anal. 5 (2011) 161-185. | MR
[11] , , and , Large scale behavior of wavelet coefficients of non-linear subordinated processes with long memory. Appl. Comput. Harmonic Anal. 32 (2012) 223-241. | Zbl | MR
[12] , , and , High order chaotic limits of wavelet scalograms under long-range dependence. Technical report, Hal-Institut Telecom (2012). http://hal-institut-telecom.archives-ouvertes.fr/hal-00662317. | Zbl | MR
[13] and , Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27-52. | Zbl | MR
[14] and , Selfsimilar processes. Princeton University Press, Princeton, New York (2002). | Zbl | MR
[15] , On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory IT-35 (1989) 197-199. | MR
[16] , Some aspects of nonstationary signal processing with emphasis on time-frequency and time-scale methods. Edited by J.M. Combes, A. Grossman and Ph. Tchamitchian, Wavelets. Springer-Verlag (1989) 68-98. | Zbl | MR
[17] , Fractional Brownian motion and wavelets. Edited by M. Farge, J.C.R. Hung and J.C. Vassilicos, Fractals and Fourier Transforms-New Developments and New Applications. Oxford University Press (1991). | Zbl | MR
[18] , Time-Frequency/Time-scale Analysis, 1st edition. Academic Press (1999). | Zbl | MR
[19] and . Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517-532. | Zbl | MR
[20] and , Central limit theorems and other limit theorems for functionals of gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1985) 191-212. | Zbl | MR
[21] and , Whittle estimator for finite-variance non-gaussian time series with long memory. Ann. Statist. 27 (1999) 178-203. | Zbl | MR
[22] and , Stochastic modelling of riverflow time series. J. Roy. Statist. Soc. Ser. A 140 (1977) 1-47.
[23] , Multiple Wiener-Itô integrals, vol. 849 of Lect. Notes Math. Springer, Berlin (1981). | Zbl | MR
[24] , and , On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. J. Time Ser. Anal. 28 (2007) 155-187. | Zbl | MR
[25] and , Stein's method meets Malliavin calculus: a short survey with new estimates. Technical report, Recent Advances in Stochastic Dynamics and Stochastic Analysis 8 (2010) 207-236. | Zbl | MR
[26] and , Stein's method on wiener chaos. Probability Theory and Related Fields 154 (2009) 75-118. | Zbl | MR
[27] , The Malliavin Calculus and Related Topics. Springer (2006). | Zbl | MR
[28] , Log-periodogram regression of time series with long range dependence. Ann. Statist. 23 (1995) 1048-1072. | Zbl | MR
[29] , Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 (1995) 1630-1661. | Zbl | MR
[30] and , Central limit theorems for arrays of decimated linear processes. Stoch. Proc. Appl. 119 (2009) 3006-3041. | Zbl | MR
[31] and , Asymptotic normality of wavelet estimators of the memory parameter for linear processes. J. Time Ser. Anal. 30 (2009) 534-558. | Zbl | MR
[32] , Analyses statistiques des communications sur puce. Ph.D. thesis, École normale supérieure de Lyon (2006). Available on http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2006/PhD2006-09.pdf.
[33] , A representation for self-similar processes. Stoch. Proc. Appl. 7 (1978) 55-64. | Zbl | MR
[34] , Central limit theorems and other limit theorems for functionals of gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1979) 191-212. | Zbl
[35] and , Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Process. 40 (1992) 611-623.
Cité par Sources :






