Our first theorem states that the convolution of two symmetric densities which are k-monotone on (0,∞) is again (symmetric) k-monotone provided 0 < k ≤ 1. We then apply this result, together with an extremality approach, to derive sharp moment and exponential bounds for distributions having such shape constrained densities.
Keywords: multiply monotonicity, symmetric densities, unimodality, Wintner's theorem, Bernstein's inequality
@article{PS_2013__17__605_0,
author = {Lef\`evre, Claude and Utev, Sergey},
title = {Convolution property and exponential bounds for symmetric monotone densities},
journal = {ESAIM: Probability and Statistics},
pages = {605--613},
year = {2013},
publisher = {EDP Sciences},
volume = {17},
doi = {10.1051/ps/2012012},
mrnumber = {3085635},
zbl = {1291.60030},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2012012/}
}
TY - JOUR AU - Lefèvre, Claude AU - Utev, Sergey TI - Convolution property and exponential bounds for symmetric monotone densities JO - ESAIM: Probability and Statistics PY - 2013 SP - 605 EP - 613 VL - 17 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2012012/ DO - 10.1051/ps/2012012 LA - en ID - PS_2013__17__605_0 ER -
%0 Journal Article %A Lefèvre, Claude %A Utev, Sergey %T Convolution property and exponential bounds for symmetric monotone densities %J ESAIM: Probability and Statistics %D 2013 %P 605-613 %V 17 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2012012/ %R 10.1051/ps/2012012 %G en %F PS_2013__17__605_0
Lefèvre, Claude; Utev, Sergey. Convolution property and exponential bounds for symmetric monotone densities. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 605-613. doi: 10.1051/ps/2012012
[1] and , Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Stat. 35 (2007) 2536-2564. | Zbl | MR
[2] and , Extremal slabs in the cube and the Laplace transform. Adv. Math. 174 (2003) 89-114. | Zbl | MR
[3] , , and , Generalized Dirichlet distributions on the ball and moments. ALEA - Latin Amer. J. Probab. Math. Stat. 7 (2010) 319-340. | Zbl | MR
[4] , and , Unimodality of Probability Measures. Kluwer, Dordrecht (1997). | Zbl | MR
[5] S. Dharmadhikari and K. Joag-dev, Unimodality, Convexity, and Applications. Academic, San Diego (1988). | Zbl | MR
[6] , A note on symmetric Bernoulli random variables. Ann. Math. Stat. 41 (1970) 1223-1226. | Zbl | MR
[7] , , , and , Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities. Trans. Amer. Math. Soc. 349 (1997) 997-1027. | Zbl | MR
[8] , Radial positive definite functions generated by Euclid's hat. J. Multiv. Anal. 69 (1999) 88-119. | Zbl | MR
[9] , The extrema of the expected value of a function of independent random variables. Ann. Math. Stat. 26 (1955) 268-275. | Zbl | MR
[10] and , Preservation of log-concavity on summation. ESAIM: PS 10 (2005) 206-215. | Zbl | MR | Numdam
[11] , On unimodal distributions. Izv. Nauchno- Issled. Inst. Mat. Mech. Tomsk. Gos. Univ. 2 (1938) 1-7 (in Russian). | Zbl | JFM
[12] and , On multiply monotone distributions, discrete or continuous, with applications. Working paper, ISFA, Université de Lyon 1 (2011). | Zbl
[13] and , Exact norms of a Stein-type operator and associated stochastic orderings. Probab. Theory Relat. Fields 127 (2003) 353-366. | Zbl | MR
[14] , Extensions d'un théorème de D. Dugué et M. Girault. Wahrscheinlichkeitstheorie 1 (1962) 159-173. | Zbl
[15] and , Inequalities: Theory of Majorization and its Applications. Academic, New York (1979). | Zbl | MR
[16] and , Distributional characterizations through scaling relations. Aust. N. Z. J. Stat. 49 (2007) 115-135. | Zbl | MR
[17] , Toward the best constant factor for the Rademacher-Gaussian tail comparison. ESAIM: PS 11 (2007) 412-426. | Zbl | MR | Numdam
[18] , Fractional Differential Equations. Academic, San Diego (1999). | Zbl | MR
[19] , Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Springer, Berlin (2000). | Zbl | MR
[20] and , Stochatic Orders. Springer, New York (2007). | Zbl | MR
[21] , Extremal problems in moment inequalities, in Limit Theorems of Probability Theory of Trudy Inst. Mat., vol. 5. Nauka Sibirsk. Otdel., Novosibirsk. (1985) 56-75 (in Russian). | Zbl | MR
[22] , Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 (1956) 189-207. | Zbl | MR
[23] , On a class of Fourier transforms. Amer. J. Math. 58 (1936) 45-90. | MR | JFM
Cité par Sources :






