This paper deals with the problem of estimating a regression function f, in a random design framework. We build and study two adaptive estimators based on model selection, applied with warped bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function f on these bases, we rather consider the expansion of h = f ∘ G-1, where G is the cumulative distribution function of the design, following Kerkyacharian and Picard [Bernoulli 10 (2004) 1053-1105]. The data-driven selection of the (best) space is done with two strategies: we use both a penalization version of a “warped contrast”, and a model selection device in the spirit of Goldenshluger and Lepski [Ann. Stat. 39 (2011) 1608-1632]. We propose by these methods two functions, ĥl (l = 1, 2), easier to compute than least-squares estimators. We establish nonasymptotic mean-squared integrated risk bounds for the resulting estimators, f̂l = ĥl°G if G is known, or f̂l = ĥl°Ĝ (l = 1,2) otherwise, where Ĝ is the empirical distribution function. We study also adaptive properties, in case the regression function belongs to a Besov or Sobolev space, and compare the theoretical and practical performances of the two selection rules.
Keywords: adaptive estimator, model selection, nonparametric regression estimation, warped bases
@article{PS_2013__17__328_0,
author = {Chagny, Ga\"elle},
title = {Penalization \protect\emph{versus {}Goldenshluger-Lepski} strategies in warped bases regression},
journal = {ESAIM: Probability and Statistics},
pages = {328--358},
year = {2013},
publisher = {EDP Sciences},
volume = {17},
doi = {10.1051/ps/2011165},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2011165/}
}
TY - JOUR AU - Chagny, Gaëlle TI - Penalization versus Goldenshluger-Lepski strategies in warped bases regression JO - ESAIM: Probability and Statistics PY - 2013 SP - 328 EP - 358 VL - 17 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2011165/ DO - 10.1051/ps/2011165 LA - en ID - PS_2013__17__328_0 ER -
%0 Journal Article %A Chagny, Gaëlle %T Penalization versus Goldenshluger-Lepski strategies in warped bases regression %J ESAIM: Probability and Statistics %D 2013 %P 328-358 %V 17 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2011165/ %R 10.1051/ps/2011165 %G en %F PS_2013__17__328_0
Chagny, Gaëlle. Penalization versus Goldenshluger-Lepski strategies in warped bases regression. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 328-358. doi: 10.1051/ps/2011165
[1] , and , Random design wavelet curve smoothing. Statist. Probab. Lett. 35 (1997) 225-232. | Zbl | MR
[2] and , Robust linear least squares regression. Ann. Stat. (2011) (to appear), arXiv:1010.0074. | Zbl | MR
[3] and , Robust linear regression through PAC-Bayesian truncation. Preprint, arXiv:1010.0072.
[4] , Model selection for regression on a random design. ESAIM: PS 6 (2002) 127-146. | Numdam | Zbl | MR | EuDML
[5] , and , Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301-413. | Zbl | MR
[6] , and , Slope heuristics: overview and implementation. Stat. Comput. 22-2 (2011) 455-470. | MR
[7] , Model selection for Gaussian regression with random design. Bernoulli 10 (2004) 1039-1051. | Zbl | MR
[8] and , Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. | Zbl | MR
[9] and , Minimal penalties for gaussian model selection. Probab. Theory Relat. Fields 138 (2006) 33-73. | Zbl | MR
[10] and , Penalized contrast estimation of density and hazard rate with censored data. Sankhya 67 (2005) 441-475. | Zbl | MR
[11] , and , Nonparametric density estimation in presence of bias and censoring. Test 18 (2009) 166-194. | Zbl | MR
[12] and , Wavelet shrinkage for nonequispaced samples. Ann. Stat. 26 (1998) 1783-1799. | Zbl | MR
[13] , Régression: bases déformées et sélection de modèles par pénalisation et méthode de Lepski. Preprint, hal-00519556 v2.
[14] and , A new algorithm for fixed design regression and denoising. Ann. Inst. Stat. Math. 56 (2004) 449-473. | Zbl | MR
[15] and , Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303. Springer-Verlag, Berlin (1993). | Zbl | MR
[16] , , and , Wavelet shrinkage: asymptopia? With discussion and a reply by the authors. J. Roy. Stat. Soc., Ser. B 57 (1995) 301-369. | Zbl | MR
[17] , and , Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat. 27 (1956) 642-669. | Zbl | MR
[18] , Nonparametric curve estimation: Methods, theory, and applications. Springer Series in Statistics, Springer-Verlag, New York (1999) xiv+411 | Zbl | MR
[19] and , Variable bandwidth and local linear regression smoothers. Ann. Stat. 20 (1992) 2008-2036. | Zbl | MR
[20] , On pointwise adaptive curve estimation based on inhomogeneous data. ESAIM: PS 11 (2007) 344-364. | Zbl | MR | Numdam
[21] and , Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann. Stat. 39 (2011) 1608-1632. | Zbl | MR
[22] and , Adaptive spline estimates in a nonparametric regression model. Teor. Veroyatnost. i Primenen. ( Russian) 37 (1992) 554-561; translation in Theor. Probab. Appl. 37 (1992) 521-529. | Zbl | MR
[23] and , Local polynomial estimators of the volatility function in nonparametric autoregression. J. Econ. 81 (1997) 223-242. | Zbl | MR
[24] and , Regression in random design and warped wavelets. Bernoulli 10 (2004) 1053-1105. | Zbl | MR
[25] and , Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 (2005) 1060-1077. | Zbl | MR
[26] and , Nonparametric regression estimation using penalized least squares. IEEE Trans. Inf. Theory 47 (2001) 3054-3058. | Zbl | MR
[27] , Adaptive estimation of the transition density of a particular hidden Markov chain. J. Multivar. Anal. 99 (2008) 787-814. | Zbl | MR
[28] , On estimating regression. Theory Probab. Appl. 9 (1964) 141-142. | Zbl
[29] , Regression in random design and Bayesian warped wavelets estimators. Electron. J. Stat. 3 (2009) 1084-1112. | MR
[30] , Introduction à l'estimation non-paramétrique, Mathématiques & Applications (Berlin), vol. 41. Springer-Verlag, Berlin (2004). | Zbl | MR
[31] , Smooth regression analysis. Sankhya A 26 (1964) 359-372. | Zbl | MR
[32] , Model selection in nonparametric regression. Ann. Stat. 31 (2003) 252-273. | Zbl | MR
Cité par Sources :





