For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z = {Z(t) = W(Y(t)), t ≥ 0} obtained by taking a fractional Brownian motion {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion.
Keywords: fractional brownian motion, strictlyα-stable Lévy process, α-time brownian motion, α-time fractional brownian motion, partial differential equation, local time, Hölder condition
@article{PS_2012__16__1_0,
author = {Nane, Erkan and Wu, Dongsheng and Xiao, Yimin},
title = {$\alpha $-time fractional brownian motion: {PDE} connections and local times},
journal = {ESAIM: Probability and Statistics},
pages = {1--24},
year = {2012},
publisher = {EDP Sciences},
volume = {16},
doi = {10.1051/ps/2011103},
mrnumber = {2900521},
zbl = {1278.60074},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2011103/}
}
TY - JOUR AU - Nane, Erkan AU - Wu, Dongsheng AU - Xiao, Yimin TI - $\alpha $-time fractional brownian motion: PDE connections and local times JO - ESAIM: Probability and Statistics PY - 2012 SP - 1 EP - 24 VL - 16 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2011103/ DO - 10.1051/ps/2011103 LA - en ID - PS_2012__16__1_0 ER -
%0 Journal Article %A Nane, Erkan %A Wu, Dongsheng %A Xiao, Yimin %T $\alpha $-time fractional brownian motion: PDE connections and local times %J ESAIM: Probability and Statistics %D 2012 %P 1-24 %V 16 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2011103/ %R 10.1051/ps/2011103 %G en %F PS_2012__16__1_0
Nane, Erkan; Wu, Dongsheng; Xiao, Yimin. $\alpha $-time fractional brownian motion: PDE connections and local times. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 1-24. doi: 10.1051/ps/2011103
[1] , The Geometry of Random Fields. Wiley, New York (1981). | Zbl | MR
[2] and , Brownian-time processes : the pde connection and the half-derivative generator. Ann. Probab. 29 (2001) 1780-1795. | Zbl | MR
[3] and , On the Small deviation problem for some iterated processes. Electron. J. Probab. 14 (2009) 1992-2010. | Zbl | MR
[4] , and , Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361 (2009) 3915-3930. | Zbl | MR
[5] , and , Space-time duality for fractional diffusion. J. Appl. Probab. 46 (2009) 1100-1115. | Zbl | MR
[6] , and , Equations of Mathematical Physics and composition of Brownian and Cauchy processes. Stoch. Anal. Appl. 29 (2011) 551-569. | Zbl | MR
[7] , Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277-299. | Zbl | MR
[8] , Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69-94. | Zbl | MR
[9] , . Cambridge University Press (1996). | Zbl | MR
[10] , Some path properties of iterated Brownian motion, in Seminar on Stochastic Processes, edited by E.Çinlar, K.L. Chung and M.J. Sharpe. Birkhäuser, Boston (1993) 67-87. | Zbl | MR
[11] and , The level set of iterated Brownian motion, Séminaire de Probabilités XXIX, edited by J. Azéma, M. Emery, P.-A. Meyer and M. Yor. Lect. Notes Math. 1613 (1995) 231-236. | Numdam | Zbl | MR | EuDML
[12] and , Brownian motion in a Brownian crack. Ann. Appl. Probab. 8 (1998) 708-748. | Zbl | MR
[13] , , and , The local time of iterated Brownian motion. J. Theoret. Probab. 9 (1996) 717-743. | Zbl | MR
[14] and , Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810-817. | Zbl | MR
[15] , The invariance principle for stationary processes. Teor. Verojatnost. i Primenen. 15 (1970) 498-509. | Zbl | MR
[16] , Higher order PDE's and symmetric stable processes. Probab. Theory Relat. Fields 129 (2004) 495-536. | Zbl | MR
[17] , Iterated Brownian motion in an open set. Ann. Appl. Probab. 14 (2004) 1529-1558. | Zbl | MR
[18] and , Composition of processes and related partial differential equations. J. Theor. Probab. 24 (2011) 342-375. | Zbl | MR
[19] , Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw. Geb. 56 (1981) 195-228. | Zbl | MR
[20] and , Selfsimilar Processes. Princeton University Press, Princeton (2002). | Zbl | MR
[21] and , Occupation densities. Ann. Probab. 8 (1980) 1-67. | Zbl | MR
[22] , and , Fokker-Plank-Kolmogorv equations associated with SDEs driven by time-changed fractional Brownian motion. Proc. Amer. Math. Soc. 139 (2011) 691-705. | Zbl | MR
[23] , Hausdorff and packing measures of the level sets of iterated Brownian motion. J. Theoret. Probab. 12 (1999) 313-346. | Zbl | MR
[24] , Some Random Series of Functions, 2nd edition. Cambridge University Press (1985). | Zbl | MR
[25] and , Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125-3151. | Zbl | MR
[26] , Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht (1995). | Zbl | MR
[27] and , Evaluating the small deviation probabilities for subordinated Lévy processes. Stoch. Process. Appl. 113 (2004) 273-287. | Zbl | MR
[28] , Iterated Brownian motion in parabola-shaped domains. Potential Anal. 24 (2006) 105-123. | Zbl | MR
[29] , Iterated Brownian motion in bounded domains in ℝn. Stoch. Process. Appl. 116 (2006) 905-916. | Zbl | MR
[30] , Laws of the iterated logarithm for α-time Brownian motion. Electron. J. Probab. 11 (2006) 434-459. | Zbl | MR | EuDML
[31] , Higher order PDE's and iterated processes. Trans. Amer. Math. Soc. 360 (2008) 2681-2692. | Zbl | MR
[32] , Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett. 79 (2009) 1744-1751. | Zbl | MR
[33] and , Fractional diffusion equations and processes with randomly varying time, Ann. Probab. 37 (2009) 206-249. | Zbl | MR
[34] , Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309-330. | Zbl | MR
[35] and , Stable non-Gaussian Random Processes : Stochastic models with infinite variance. Chapman & Hall, New York (1994). | Zbl | MR
[36] K.I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). | Zbl | MR
[37] , Asymptotic formulas for stable distribution laws. Selected Translations in Mathematical Statistics and Probability 1 (1961) 157-162; Dokl. Akad. Nauk. SSSR 98 (1954) 731-734. | Zbl | MR
[38] , Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767-775. | Zbl | MR
[39] , Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields 112 (1998) 545-563. | Zbl | MR
[40] , Weak Convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 (1975) 287-302. | Zbl | MR
[41] , Sample path properties of a transient stable process. J. Math. Mech. 16 (1967) 1229-1246. | Zbl | MR
[42] , Stochastic-Process Limits. Springer, New York (2002). | Zbl | MR
[43] , Hölder conditions for the local times and Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109 (1997) 129-157. | Zbl | MR
[44] , Local times and related properties of multi-dimensional iterated Brownian motion. J. Theoret. Probab. 11 (1998) 383-408. | Zbl | MR
Cité par Sources :






