It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
Keywords: exchangeability, finite population statistics, Hoeffding decompositions, irreducible representations, random permutations, Specht modules, symmetric group
@article{PS_2011__15__S58_0,
author = {Peccati, Giovanni and Pycke, Jean-Renaud},
title = {Hoeffding spaces and {Specht} modules},
journal = {ESAIM: Probability and Statistics},
pages = {S58--S68},
year = {2011},
publisher = {EDP Sciences},
volume = {15},
doi = {10.1051/ps/2010022},
mrnumber = {2817345},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2010022/}
}
TY - JOUR AU - Peccati, Giovanni AU - Pycke, Jean-Renaud TI - Hoeffding spaces and Specht modules JO - ESAIM: Probability and Statistics PY - 2011 SP - S58 EP - S68 VL - 15 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2010022/ DO - 10.1051/ps/2010022 LA - en ID - PS_2011__15__S58_0 ER -
Peccati, Giovanni; Pycke, Jean-Renaud. Hoeffding spaces and Specht modules. ESAIM: Probability and Statistics, Tome 15 (2011), pp. S58-S68. doi: 10.1051/ps/2010022
[1] , Exchangeability and related topics. École d'été de Probabilités de Saint-Flour XIII. LNM 1117, Springer, New York (1983). | Zbl | MR
[2] , Orthogonal decomposition of symmetric functions defined on random permutations. Combin. Probab. Comput. 14 (2005) 249-268. | Zbl | MR
[3] and , Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat. 29 (2001) 353-365. | Zbl | MR
[4] and , An Edgeworth expansion for finite population statistics. Ann. Probab. 30 (2002) 1238-1265. | Zbl | MR
[5] , Group Representations in Probability and Statistics. IMS Lecture Notes - Monograph Series 11, Hayward, California (1988). | Zbl | MR
[6] and , Lie groups. Springer-Verlag, Berlin-Heidelberg-New York (1997). | Zbl | MR
[7] and , Hoeffding decompositions and urn sequences. Ann. Probab. 36 (2008) 2280-2310. | Zbl | MR
[8] , The representation theory of the symmetric groups. Lecture Notes in Math. 682, Springer-Verlag, Berlin-Heidelberg-New York (1978). | Zbl | MR
[9] , Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab. 32 (2004) 1796-1829. | Zbl | MR
[10] and , Decompositions of stochastic processes based on irreducible group representations. Theory Probab. Appl. 54 (2010) 217-245. | Zbl | MR
[11] , The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions, 2nd edition. Springer, New York (2001). | Zbl | MR
[12] , Approximation Theorems of Mathematical Statistics. Wiley, New York (1980). | Zbl | MR
[13] , Linear representations of finite groups, Graduate Texts Math. 42, Springer, New York (1977). | Zbl | MR
[14] and , Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica 6 (1990) 263-272. | Zbl | MR
Cité par Sources :






