The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through some simulations. Asymptotic normality results are also proved. Our new estimator of ρ looks especially competitive when |ρ| is small.
Keywords: extreme values, domain of attraction, excesses, generalized Pareto distribution, probability-weighted moments, second order parameter, third order condition
@article{PS_2012__16__97_0,
author = {Worms, Julien and Worms, Rym},
title = {Estimation of second order parameters using probability weighted moments},
journal = {ESAIM: Probability and Statistics},
pages = {97--113},
year = {2012},
publisher = {EDP Sciences},
volume = {16},
doi = {10.1051/ps/2010017},
mrnumber = {2946122},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2010017/}
}
TY - JOUR AU - Worms, Julien AU - Worms, Rym TI - Estimation of second order parameters using probability weighted moments JO - ESAIM: Probability and Statistics PY - 2012 SP - 97 EP - 113 VL - 16 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2010017/ DO - 10.1051/ps/2010017 LA - en ID - PS_2012__16__97_0 ER -
%0 Journal Article %A Worms, Julien %A Worms, Rym %T Estimation of second order parameters using probability weighted moments %J ESAIM: Probability and Statistics %D 2012 %P 97-113 %V 16 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2010017/ %R 10.1051/ps/2010017 %G en %F PS_2012__16__97_0
Worms, Julien; Worms, Rym. Estimation of second order parameters using probability weighted moments. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 97-113. doi: 10.1051/ps/2010017
[1] and , Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. | Zbl
[2] , and , A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Stat. Probab. Lett. 79 (2009) 295-303. | Zbl | MR
[3] and , Semi-parametric estimation for heavy tailed distributions. Extremes 13 (2010) 55-87. | Zbl | MR
[4] , and , Asymptotic behaviour of the probability-weighted moments and penultimate approximation. ESAIM : PS 7 (2003) 217-236. | Zbl | MR | Numdam
[5] , and , Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841-857. | Zbl | MR
[6] , and , Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841-857. | Zbl | MR
[7] and , Selecting the optimal sample fraction in univariate extreme value estimation. Stoc. Proc. Appl. 75 (1998) 149-172. | Zbl | MR
[8] , and , Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat. 12 (2003) 155-176. | MR
[9] , and , A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica 60 (2003) 193-213. | Zbl | MR
[10] , and , Third order extended regular variation. Publ. Inst. Math. 80 (2006) 109-120. | Zbl | MR
[11] , , and , A note on second order conditions in extreme value theory : linking general and heavy tail conditions. REVSTAT Stat. J. 5 (2007) 285-304. | Zbl | MR
[12] and , “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5 (2002) 5-31. | Zbl | MR
[13] , and , Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5 (2002) 387-414. | Zbl | MR
[14] and , Adaptive estimates of parameters of regular variation. Ann. Stat. 13 (1985) 331-341. | Zbl | MR
[15] and , Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (1987) 339-349. | Zbl | MR
[16] , Asymptotically unbiased estimator for the extreme value index. Statist. Prob. Lett. 38 (1998) 107-115. | Zbl | MR
[17] , Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131. | Zbl | MR
[18] and , Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Applied Prob. 35 (2003) 1007-1027. | Zbl | MR
[19] , Approximation Theorems of Mathematical Statistics. Wiley & Son (1980). | Zbl | MR
[20] , Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics (2000). | Zbl
[21] , Penultimate approximation for the distribution of the excesses. ESAIM : PS 6 (2002) 21-31. | Zbl | MR | Numdam
Cité par Sources :





