Let (Sk)k≥1 be the classical Bernoulli random walk on the integer line with jump parameters p ∈ (0,1) and q = 1 - p. The probability distribution of the sojourn time of the walk in the set of non-negative integers up to a fixed time is well-known, but its expression is not simple. By modifying slightly this sojourn time through a particular counting process of the zeros of the walk as done by Chung & Feller [Proc. Nat. Acad. Sci. USA 35 (1949) 605-608], simpler representations may be obtained for its probability distribution. In the aforementioned article, only the symmetric case (p = q = 1/2) is considered. This is the discrete counterpart to the famous Paul Lévy's arcsine law for Brownian motion. In the present paper, we write out a representation for this probability distribution in the general case together with others related to the random walk subject to a possible conditioning. The main tool is the use of generating functions.
Keywords: random walk, sojourn time, generating function
@article{PS_2012__16__324_0,
author = {Lachal, Aim\'e},
title = {Sojourn time in $\mathbb {Z}^{+}$ for the {Bernoulli} random walk on $\mathbb {Z}$},
journal = {ESAIM: Probability and Statistics},
pages = {324--351},
year = {2012},
publisher = {EDP Sciences},
volume = {16},
doi = {10.1051/ps/2010013},
zbl = {1275.60046},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2010013/}
}
TY - JOUR
AU - Lachal, Aimé
TI - Sojourn time in $\mathbb {Z}^{+}$ for the Bernoulli random walk on $\mathbb {Z}$
JO - ESAIM: Probability and Statistics
PY - 2012
SP - 324
EP - 351
VL - 16
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ps/2010013/
DO - 10.1051/ps/2010013
LA - en
ID - PS_2012__16__324_0
ER -
%0 Journal Article
%A Lachal, Aimé
%T Sojourn time in $\mathbb {Z}^{+}$ for the Bernoulli random walk on $\mathbb {Z}$
%J ESAIM: Probability and Statistics
%D 2012
%P 324-351
%V 16
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/ps/2010013/
%R 10.1051/ps/2010013
%G en
%F PS_2012__16__324_0
Lachal, Aimé. Sojourn time in $\mathbb {Z}^{+}$ for the Bernoulli random walk on $\mathbb {Z}$. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 324-351. doi: 10.1051/ps/2010013
[1] , Convergence of probability measures. John Wiley & Sons (1968). | Zbl | MR
[2] and , Handbook of Brownian motion - facts and formulae, Probability and its Applications. Birkhäuser Verlag (1996). | Zbl | MR
[3] , and , Some Darling-Siegert relationships connected with random flights. Stat. Probab. Lett. 79 (2009) 243-254. | Zbl | MR
[4] and , On fluctuations in coin-tossings. Proc. Natl. Acad. Sci. USA 35 (1949) 605-608. | Zbl | MR
[5] , An introduction to probability theory and its applications I, 3rd edition. John Wiley & Sons (1968). | Zbl | MR
[6] and , Analytic combinatorics. Cambridge University Press, Cambridge (2009). | Zbl | MR
[7] A. Lachal, arXiv:1003.5009[math.PR] (2010).
[8] , Calcul des probabilités. Dunod (1966). | Zbl
[9] , On the number of positive sums of random variables. Skand. Aktuarietidskrift (1949) 27-36. | Zbl | MR
[10] , On the fluctuations of sums of random variables I-II. Math. Scand. 1 (1953) 263-285; 2 (1954) 195-223. | Zbl | MR | EuDML
[11] , Principles of random walk, 2nd edition. Graduate Texts in Mathematics 34 (1976). | Zbl | MR
Cité par Sources :






