Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325-337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105-112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325-337] and [T. Bodineau and J. Martin, Electron. Commun. Probab. 10 (2005) 105-112 (electronic)], on an embedding in Brownian paths and the KMT approximation. The study of the subexponential case completes the exposition.
Keywords: large deviations, random growth model, Skorokhod embedding theorem
@article{PS_2011__15__217_0,
author = {Ibrahim, Jean-Paul},
title = {Large deviations for directed percolation on a thin rectangle},
journal = {ESAIM: Probability and Statistics},
pages = {217--232},
year = {2011},
publisher = {EDP Sciences},
volume = {15},
doi = {10.1051/ps/2009015},
mrnumber = {2870513},
zbl = {1263.60021},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2009015/}
}
TY - JOUR AU - Ibrahim, Jean-Paul TI - Large deviations for directed percolation on a thin rectangle JO - ESAIM: Probability and Statistics PY - 2011 SP - 217 EP - 232 VL - 15 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2009015/ DO - 10.1051/ps/2009015 LA - en ID - PS_2011__15__217_0 ER -
Ibrahim, Jean-Paul. Large deviations for directed percolation on a thin rectangle. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 217-232. doi: 10.1051/ps/2009015
[1] and , A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. (2005) 325-337. | Zbl | MR
[2] , GUEs and queues. Probab. Theory Relat. Fields 119 (2001) 256-274. | Zbl | MR
[3] , and , Aging of spherical spin glasses. Probab. Theory Relat. Fields 120 (2001) 1-67. | Zbl | MR
[4] and , Large deviations for Wigner's law and Voiculescu's non-commutative entropy. Probab. Theory Relat. Fields 108 (1997) 517-542. | Zbl | MR
[5] and , A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105-112 (electronic). | Zbl | MR | EuDML
[6] , Probability, Classics in Applied Mathematics 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). Corrected reprint of the 1968 original. | Zbl | MR
[7] , Distribution function inequalities for martingales. Ann. Probability 1 (1973) 19-42. | Zbl | MR
[8] , A simple invariance theorem. Preprint arXiv:math.PR/0508213 (2005).
[9] and , The Komlós-Major-Tusnády approximations and their applications. Austral. J. Statist. 26 (1984) 189-218. | Zbl | MR
[10] , On the Lp norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976) 697-704. | Zbl | MR
[11] , On large deviations for the spectral measure of discrete coulomb gas, in Séminaire de Probabilités, XLI. Lecture Notes in Math. 1934. Springer, Berlin (2008) 19-50. | Zbl | MR
[12] , Certain probabilistic inequalities for martingales. Sibirsk. Mat. Ž. 14 (1973) 185-193, 239. | Zbl | MR
[13] and , Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen. 16 (1971) 660-675. | Zbl | MR
[14] , and , Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Statist. Phys. 102 (2001) 1085-1132. | Zbl | MR
[15] , On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 (1998) 151-204. | Zbl | MR
[16] , Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. | Zbl | MR
[17] , and , An approximation of partial sums of independent RV's, and the sample DF. II. Z. Wahrscheinlichkeitstheor. und Verw. Geb. 34 (1976) 33-58. | Zbl | MR
[18] , Orthogonal polynomial ensembles in probability theory. Prob. Surveys 2 (2005) 385-447 (electronic). | Zbl | MR
[19] , Deviation inequalities on largest eigenvalues, in Geometric aspects of functional analysis. Lecture Notes in Math. 1910 (2007) 167-219. | Zbl | MR
[20] and , Small deviations for beta ensembles. Preprint (2010). | Zbl | MR
[21] , Random matrices, 2nd edition. Academic Press Inc., Boston, MA (1991). | Zbl | MR
[22] and , Large deviations of heavy-tailed sums with applications in insurance. Extremes 1 (1998) 81-110. | Zbl | MR
[23] and , A representation for non-colliding random walks. Electron. Commun. Probab. 7 (2002) 1-12 (electronic). | Zbl | MR
[24] D.l Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293, 3rd edition,. Springer-Verlag, Berlin (1999). | Zbl | MR
[25] and , Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 316. Springer-Verlag, Berlin (1997). Appendix B by Thomas Bloom. | Zbl | MR
[26] , A new way to obtain estimates in the invariance principle, in High dimensional probability, II (Seattle, WA, 1999), Progr. Probab. 47. Birkhäuser Boston, Boston, MA (2000) 223-245. | Zbl | MR
[27] , A remark on the Skorohod representation. Z. Wahrscheinlichkeitstheor. und Verw. Geb. 23 (1972) 67-74. | Zbl | MR
[28] , Studies in the theory of random processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass (1965). | Zbl | MR
[29] , A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A 39 (2006) 8977-8981. | Zbl | MR
[30] and , Level-spacing distributions and the Airy kernel. Phys. Lett. B 305 (1993) 115-118. | Zbl | MR
Cité par Sources :






