Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.
Keywords: estimation, sure shrinkage, thresholding, denoising, gaussian processes, Malliavin calculus
@article{PS_2011__15__180_0,
author = {Privault, Nicolas and R\'eveillac, Anthony},
title = {SURE shrinkage of gaussian paths and signal identification},
journal = {ESAIM: Probability and Statistics},
pages = {180--196},
year = {2011},
publisher = {EDP Sciences},
volume = {15},
doi = {10.1051/ps/2009013},
mrnumber = {2870511},
zbl = {1261.93078},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2009013/}
}
TY - JOUR AU - Privault, Nicolas AU - Réveillac, Anthony TI - SURE shrinkage of gaussian paths and signal identification JO - ESAIM: Probability and Statistics PY - 2011 SP - 180 EP - 196 VL - 15 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2009013/ DO - 10.1051/ps/2009013 LA - en ID - PS_2011__15__180_0 ER -
%0 Journal Article %A Privault, Nicolas %A Réveillac, Anthony %T SURE shrinkage of gaussian paths and signal identification %J ESAIM: Probability and Statistics %D 2011 %P 180-196 %V 15 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2009013/ %R 10.1051/ps/2009013 %G en %F PS_2011__15__180_0
Privault, Nicolas; Réveillac, Anthony. SURE shrinkage of gaussian paths and signal identification. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 180-196. doi: 10.1051/ps/2009013
[1] and , Level Sets and Extrema of Random Processes and Fields. Wiley, Hoboken (2009). | Zbl | MR
[2] and , On minimax filtering over ellipsoids. Math. Methods Statist. 4 (1995) 259-273. | Zbl | MR
[3] , Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277-299. | Zbl | MR
[4] , Boundary crossing probabilities for stationary Gaussian processes and Brownian motion. Trans. Amer. Math. Soc. 263 (1981) 469-492. | Zbl | MR
[5] and , Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425-455. | Zbl | MR
[6] and , Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 (1995) 1200-1224. | Zbl | MR
[7] and , Occupation densities. Ann. Probab. 8 (1980) 1-67. | Zbl | MR
[8] , Minimax filtration of functions in L2. Probl. Inf. Transm. 18 (1982) 272-278. | Zbl | MR
[9] , The Malliavin calculus and related topics. Probability and its Applications. Springer-Verlag, Berlin, second edition (2006). | Zbl | MR
[10] , Minimax risk, Pinsker bound, in Encyclopedia of Statistical Sciences, S. Kotz Ed. Wiley, New York (1999).
[11] , Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 (1969) 51-73. | Zbl | MR
[12] , Optimal filtration of square-integrable signals in Gaussian noise. Probl. Inf. Transm. 16 (1980) 52-68. | Zbl | MR
[13] , An introduction to signal detection and estimation. Springer Texts in Electrical Engineering. Springer-Verlag, New York, second edition (1994). | Zbl | MR
[14] and , Superefficient drift estimation on the Wiener space. C. R. Acad. Sci. Paris Sér. I Math. 343 (2006) 607-612. | Zbl | MR
[15] and , Stein estimation for the drift of Gaussian processes using the Malliavin calculus. Ann. Stat. 35 (2008) 2531-2550. | Zbl | MR
[16] and , Stein estimation of Poisson process intensities. Stat. Inference Stoch. Process. 12 (2009) 37-53. | Zbl | MR
[17] and , Asymptotic properties of Gaussian processes. Ann. Math. Statist. 43 (1972) 580-596. | Zbl | MR
[18] and , Continuous martingales and Brownian motion, Vol. 293 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, third edition (1999). | Zbl | MR
[19] , Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9 (1981) 1135-1151. | Zbl | MR
[20] , The supremum of Gaussian processes with a constant variance. Prob. Th. Rel. Fields 81 (1989) 585-591. | Zbl | MR
Cité par Sources :






