The main objective of this paper is to prove new necessary conditions to the existence of KAM tori. To do so, we develop a set of explicit a-priori estimates for smooth solutions of Hamilton-Jacobi equations, using a combination of methods from viscosity solutions, KAM and Aubry-Mather theories. These estimates are valid in any space dimension, and can be checked numerically to detect gaps between KAM tori and Aubry-Mather sets. We apply these results to detect non-integrable regions in several examples such as a forced pendulum, two coupled penduli, and the double pendulum.
Keywords: Aubry-Mather theory, Hamilton-Jacobi integrability, viscosity solutions
@article{M2AN_2008__42_6_1047_0,
author = {Gomes, Diogo A. and Oberman, Adam},
title = {Viscosity solutions methods for converse {KAM} theory},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1047--1064},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {6},
doi = {10.1051/m2an:2008035},
mrnumber = {2473319},
zbl = {1156.37015},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2008035/}
}
TY - JOUR AU - Gomes, Diogo A. AU - Oberman, Adam TI - Viscosity solutions methods for converse KAM theory JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 1047 EP - 1064 VL - 42 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2008035/ DO - 10.1051/m2an:2008035 LA - en ID - M2AN_2008__42_6_1047_0 ER -
%0 Journal Article %A Gomes, Diogo A. %A Oberman, Adam %T Viscosity solutions methods for converse KAM theory %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 1047-1064 %V 42 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2008035/ %R 10.1051/m2an:2008035 %G en %F M2AN_2008__42_6_1047_0
Gomes, Diogo A.; Oberman, Adam. Viscosity solutions methods for converse KAM theory. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 1047-1064. doi: 10.1051/m2an:2008035
[1] , and , Mathematical aspects of classical and celestial mechanics. Springer-Verlag, Berlin (1997). Translated from the 1985 Russian original by A. Iacob, reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems III, Encyclopaedia Math. Sci. 3, Springer, Berlin (1993) MR 95d:58043a]. | Zbl | MR
[2] , Mather theory and periodic solutions of the forced Burgers equation. Comm. Pure Appl. Math. 52 (1999) 811-828. | Zbl | MR
[3] and , Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, USA (1997). | Zbl | MR
[4] , An analytic counterexample to the KAM theorem. Ergod. Theory Dyn. Syst. 20 (2000) 317-333. | Zbl | MR
[5] and , An introduction to the Aubry-Mather theory. São Paulo Journal of Mathematical Sciences (to appear).
[6] , , and , Lagrangian graphs, minimizing measures and Mañé's critical values. Geom. Funct. Anal. 8 (1998) 788-809. | Zbl | MR
[7] , Partial differential equations. American Mathematical Society, Providence, RI, USA (1998). | Zbl | MR
[8] and , Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157 (2001) 1-33. | Zbl | MR
[9] and , Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal. 161 (2002) 271-305. | Zbl | MR
[10] , Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649-652. | Zbl | MR
[11] , Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043-1046. | Zbl | MR
[12] , Orbite hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1213-1216. | Zbl | MR
[13] , Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 267-270. | Zbl | MR
[14] and , Existence of critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155 (2004) 363-388. | Zbl | MR
[15] and , Controlled Markov processes and viscosity solutions. Springer-Verlag, New York (1993). | Zbl | MR
[16] , Analytic destruction of invariant circles. Ergod. Theory Dyn. Syst. 14 (1994) 267-298. | Zbl | MR
[17] , Construction of invariant measures supported within the gaps of Aubry-Mather sets. Ergod. Theory Dyn. Syst. 16 (1996) 51-86. | Zbl | MR
[18] , Classical mechanics. Addison-Wesley Publishing Co., Reading, Mass., second edition (1980). | Zbl | MR
[19] , Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems. Calc. Var. Partial Differential Equations 14 (2002) 345-357. | Zbl | MR
[20] , Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J. Math. Anal. 35 (2003) 135-147 (electronic). | Zbl | MR
[21] , Duality principles for fully nonlinear elliptic equations, in Trends in partial differential equations of mathematical physics, Progr. Nonlinear Differential Equations Appl. 61, Birkhäuser, Basel (2005) 125-136. | MR
[22] and , Computing the effective Hamiltonian using a variational approach. SIAM J. Contr. Opt. 43 (2004) 792-812 (electronic). | Zbl | MR
[23] and , Lack of integrability via viscosity solution methods. Indiana Univ. Math. J. 53 (2004) 1055-1071. | Zbl | MR
[24] , Converse KAM theory for monotone positive symplectomorphisms. Nonlinearity 12 (1999) 1299-1322. | Zbl | MR
[25] , Closed orbits and converse KAM theory. Nonlinearity 3 (1990) 961-973. | Zbl | MR
[26] and , Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Math. Appl. 56 (2003) 1501-1524. | Zbl | MR
[27] , and , Homogeneization of Hamilton-Jacobi equations. Preliminary version (1988).
[28] , Converse KAM theory, in Singular behavior and nonlinear dynamics, Vol. 1 (Sámos, 1988), World Sci. Publishing, Teaneck, USA (1989) 109-113. | MR
[29] and , Converse KAM: theory and practice. Comm. Math. Phys. 98 (1985) 469-512. | Zbl | MR
[30] , and , Converse KAM theory for symplectic twist maps. Nonlinearity 2 (1989) 555-570. | Zbl | MR
[31] , On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992) 623-638. | Zbl | MR
[32] , Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996) 273-310. | Zbl | MR
[33] , Minimal action measures for positive-definite Lagrangian systems, in IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol (1989) 466-468. | Zbl | MR
[34] , Minimal measures. Comment. Math. Helv. 64 (1989) 375-394. | Zbl | MR
[35] , Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. | Zbl | MR
[36] , Two approximations for effective hamiltonians arising from homogenization of Hamilton-Jacobi equations. Preprint (2003). | MR
Cité par Sources :





