We consider a body immersed in a perfect gas and moving under the action of a constant force. Body and gas are in thermal equilibrium. We assume a stochastic interaction body/medium: when a particle of the medium hits the body, it is absorbed and immediately re-emitted with a Maxwellian distribution. This system gives rise to a microscopic model of friction. We study the approach of the body velocity to the limiting velocity and prove that, under suitable smallness assumptions, the approach to equilibrium is
Keywords: kinetic theory of gases, Boltzmann equation, free molecular gas, friction problem, approach to equilibrium
@article{M2AN_2008__42_2_263_0,
author = {Aoki, Kazuo and Cavallaro, Guido and Marchioro, Carlo and Pulvirenti, Mario},
title = {On the motion of a body in thermal equilibrium immersed in a perfect gas},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {263--275},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {2},
doi = {10.1051/m2an:2008007},
mrnumber = {2405148},
zbl = {1133.76046},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2008007/}
}
TY - JOUR AU - Aoki, Kazuo AU - Cavallaro, Guido AU - Marchioro, Carlo AU - Pulvirenti, Mario TI - On the motion of a body in thermal equilibrium immersed in a perfect gas JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 263 EP - 275 VL - 42 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2008007/ DO - 10.1051/m2an:2008007 LA - en ID - M2AN_2008__42_2_263_0 ER -
%0 Journal Article %A Aoki, Kazuo %A Cavallaro, Guido %A Marchioro, Carlo %A Pulvirenti, Mario %T On the motion of a body in thermal equilibrium immersed in a perfect gas %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 263-275 %V 42 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2008007/ %R 10.1051/m2an:2008007 %G en %F M2AN_2008__42_2_263_0
Aoki, Kazuo; Cavallaro, Guido; Marchioro, Carlo; Pulvirenti, Mario. On the motion of a body in thermal equilibrium immersed in a perfect gas. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 2, pp. 263-275. doi: 10.1051/m2an:2008007
[1] and , The Vlasov dynamics and its fluctuations in the limit of interacting classical particles. Comm. Math. Phys. 56 (1977) 101-113. | Zbl | MR
[2] , and , On the long time behavior of infinitely extended systems of particles interacting via Kac Potentials. J. Stat. Phys. 108 (2002) 317-339. | Zbl | MR
[3] , and , Approach to equilibrium in a microscopic model of friction. Comm. Math. Phys. 264 (2006) 167-189. | Zbl | MR
[4] , and , On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17 (2007) 1369-1403. | MR
[5] , On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Mat. Appl. 27 (2007) 123-145. | Zbl | MR
[6] , Vlasov equations. Sov. J. Funct. Anal. 13 (1979) 115-123. | Zbl | MR
[7] and , Stationary motion of the adiabatic piston. Physica A 268 (1999) 412-423.
[8] , and , Scaling dynamics of a massive piston in a ideal gas, in Hard Ball Systems and the Lorentz Gas, Encycl. Math. Sci. 101, Springer, Berlin (2000) 217-227. | Zbl | MR
[9] , An Introduction to the Nonlinear Boltzmann-Vlasov Equation, in Kinetic Theories and the Boltzmann Equation, Montecatini (1981), Lecture Notes in Math. 1048, Springer, Berlin (1984) 60-110. | Zbl | MR
[10] , On the Vlasov hierarchy. Math. Meth. Appl. Sci. 3 (1981) 445-455. | Zbl | MR
Cité par Sources :






