This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.
Keywords: Ginzburg-Landau equations, numerical approximation, error analysis, spectral estimate, finite element method
@article{M2AN_2005__39_5_863_0,
author = {Bartels, S\"oren},
title = {Robust a priori error analysis for the approximation of degree-one {Ginzburg-Landau} vortices},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {863--882},
year = {2005},
publisher = {EDP Sciences},
volume = {39},
number = {5},
doi = {10.1051/m2an:2005038},
mrnumber = {2178565},
zbl = {1078.35006},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2005038/}
}
TY - JOUR AU - Bartels, Sören TI - Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 863 EP - 882 VL - 39 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2005038/ DO - 10.1051/m2an:2005038 LA - en ID - M2AN_2005__39_5_863_0 ER -
%0 Journal Article %A Bartels, Sören %T Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 863-882 %V 39 %N 5 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2005038/ %R 10.1051/m2an:2005038 %G en %F M2AN_2005__39_5_863_0
Bartels, Sören. Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 5, pp. 863-882. doi: 10.1051/m2an:2005038
[1] and, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311-341. | Zbl
[2] , A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004).
[3] , Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal. 54 (2003) 1079-1119. | Zbl
[4] , and, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994). | Zbl | MR
[5] and, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002). | Zbl | MR
[6] , Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations 19 (1994) 1371-1395. | Zbl
[7] and, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl. 5 (1995) 363-389. | Zbl
[8] , and, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1075-1088. | Zbl
[9] and, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. | Zbl
[10] and, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal. 46 (2001) 807-816. | Zbl
[11] , and, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 54-81 | Zbl
[12] , and, Finite element approximation of a periodic Ginzburg-Landau model for type- superconductors. Numer. Math. 64 (1993) 85-114. | Zbl
[13] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383-404. | Zbl
[14] , Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998). | Zbl | MR
[15] and, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound. 7 (2005) 1-28. | Zbl
[16] and, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33-65. | Zbl
[17] and, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. | Zbl | MR
[18] and, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz. 20 (1950) 1064-1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138-167.
[19] and, Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 427-440. | Zbl | Numdam
[20] ,, Finite element approximations of Landau-Ginzburg's equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér. 29 (1995) 629-655. | Zbl | Numdam
[21] and, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994). | Zbl | MR
[22] , and, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall's inequality. Preprint (2003).
[23] and, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett. 1 (1994) 701-715. | Zbl
[24] , Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension- submanifolds. Comm. Pure Appl. Math. 51 (1998) 385-441. | Zbl
[25] , Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323-359. | Zbl
[26] , The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101-110. | Zbl
[27] and, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265-1293. | Zbl
[28] , The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations 22 (1997) 619-632. | Zbl
[29] , Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations 42 (2000), 25 (electronic). | Zbl | MR
[30] , On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995) 334-344. | Zbl
[31] , Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 593-598. | Zbl
[32] , and, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput. 19 (1998) 1333-1339. | Zbl
[33] , Vortices in complex scalar fields. Phys. D 43 (1990) 385-406. | Zbl
[34] and, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000). | Zbl | MR
[35] , Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997). | Zbl | MR
[36] , A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723-759. | Zbl
Cité par Sources :





