We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the -gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the origin. We show numerical evidence of the convergence of the method.
Keywords: moving mesh, finite elements, harmonic map flow, axisymmetric
@article{M2AN_2005__39_4_781_0,
author = {Merlet, Benoit and Pierre, Morgan},
title = {Moving mesh for the axisymmetric harmonic map flow},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {781--796},
year = {2005},
publisher = {EDP Sciences},
volume = {39},
number = {4},
doi = {10.1051/m2an:2005034},
mrnumber = {2165679},
zbl = {1078.35008},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2005034/}
}
TY - JOUR AU - Merlet, Benoit AU - Pierre, Morgan TI - Moving mesh for the axisymmetric harmonic map flow JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 781 EP - 796 VL - 39 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2005034/ DO - 10.1051/m2an:2005034 LA - en ID - M2AN_2005__39_4_781_0 ER -
%0 Journal Article %A Merlet, Benoit %A Pierre, Morgan %T Moving mesh for the axisymmetric harmonic map flow %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 781-796 %V 39 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2005034/ %R 10.1051/m2an:2005034 %G en %F M2AN_2005__39_4_781_0
Merlet, Benoit; Pierre, Morgan. Moving mesh for the axisymmetric harmonic map flow. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 4, pp. 781-796. doi: 10.1051/m2an:2005034
[1] and, Mesh optimization for singular axisymmetric harmonic maps from the disc into the sphere. Numer. Math. To appear. | Zbl | MR
[2] ,, and, Heat flows and relaxed energies for harmonic maps, in Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Birkhäuser Boston, Boston, MA. Progr. Nonlinear Differential Equations Appl. 7 (1992) 99-109. | Zbl
[3] , and, Nonuniqueness for the heat flow of harmonic maps on the disk. Arch. Rational Mech. Anal. 161 (2002) 93-112. | Zbl
[4] and, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983) 203-215. | Zbl
[5] and, Design and application of a gradient-weighted moving finite element code. I. In one dimension. SIAM J. Sci. Comput. 19 (1998) 728-765. | Zbl
[6] , Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 363-395. | Numdam | Zbl | EuDML
[7] and, Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964) 109-160. | Zbl
[8] , Uniqueness for the harmonic map flow from surfaces to general targets. Comment. Math. Helv. 70 (1995) 310-338. | Zbl | EuDML
[9] , Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differential Equations 3 (1995) 95-105. | Zbl
[10] and, A new moving mesh algorithm for the finite element solution of variational problems. SIAM J. Numer. Anal. 35 (1998) 1416-1438. | Zbl
[11] , Weak BV convergence of moving finite elements for singular axisymmetric harmonic maps. SIAM J. Numer. Anal. To appear. | Zbl | MR
[12] , Algorithms and consistent approximations, Optimization, Applied Mathematical Sciences 124 (1997), Springer-Verlag, New York. | Zbl | MR
[13] , On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3 (1995) 297-315. | Zbl
[14] and, Minimum energy triangulations for elliptic problems. Comput. Methods Appl. Mech. Engrg. 84 (1990) 257-274. | Zbl
[15] , The evolution of harmonic maps, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990). Math. Soc. Japan (1991) 1197-1203. | Zbl
[16] , Reverse bubbling and nonuniqueness in the harmonic map flow. Internat. Math. Res. Notices 10 (2002) 505-520. | Zbl
Cité par Sources :






