The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on . This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.-L. Lions’ book that means with constant viscosity coefficients.
Keywords: compressible flows, Navier-Stokes equations, low Mach (Froude) number limit shallow-water equations, lake equations, nonconstant density
@article{M2AN_2005__39_3_477_0,
author = {Bresch, Didier and Gisclon, Marguerite and Lin, Chi-Kun},
title = {An example of low {Mach} {(Froude)} number effects for compressible flows with nonconstant density (height) limit},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {477--486},
year = {2005},
publisher = {EDP Sciences},
volume = {39},
number = {3},
doi = {10.1051/m2an:2005026},
mrnumber = {2157146},
zbl = {1080.35065},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2005026/}
}
TY - JOUR AU - Bresch, Didier AU - Gisclon, Marguerite AU - Lin, Chi-Kun TI - An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 477 EP - 486 VL - 39 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2005026/ DO - 10.1051/m2an:2005026 LA - en ID - M2AN_2005__39_3_477_0 ER -
%0 Journal Article %A Bresch, Didier %A Gisclon, Marguerite %A Lin, Chi-Kun %T An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 477-486 %V 39 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2005026/ %R 10.1051/m2an:2005026 %G en %F M2AN_2005__39_3_477_0
Bresch, Didier; Gisclon, Marguerite; Lin, Chi-Kun. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Low Mach Number Flows Conference, Tome 39 (2005) no. 3, pp. 477-486. doi: 10.1051/m2an:2005026
[1] , Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004). | Zbl
[2] and, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211-223. | Zbl
[3] , and, Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47-82. | Zbl
[4] , and, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009-1037. | Zbl
[5] ,, and, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125-148. | Zbl
[6] , Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000). | Zbl | MR | Numdam
[7] ,, and, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461-471. | Zbl
[8] , Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003). | MR | Numdam
[9] and, Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl
[10] , Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl
[11] and, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493-1515. | Zbl
[12] , and, Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479-510. | Zbl
[13] , Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998). | Zbl | MR
[14] and, Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585-627. | Zbl
[15] and, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61-90. | Zbl
[16] and, The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001). | MR
[17] , Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311-324. | Zbl
[18] , Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987). | Zbl
Cité par Sources :






