The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional case.
Keywords: incompressible Navier-Stokes equation, time discretisation, backward differentiation formula, error estimate, parabolic smoothing
@article{M2AN_2004__38_5_757_0,
author = {Emmrich, Etienne},
title = {Error of the two-step {BDF} for the incompressible {Navier-Stokes} problem},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {757--764},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {5},
doi = {10.1051/m2an:2004037},
mrnumber = {2104427},
zbl = {1076.76054},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004037/}
}
TY - JOUR AU - Emmrich, Etienne TI - Error of the two-step BDF for the incompressible Navier-Stokes problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 757 EP - 764 VL - 38 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004037/ DO - 10.1051/m2an:2004037 LA - en ID - M2AN_2004__38_5_757_0 ER -
%0 Journal Article %A Emmrich, Etienne %T Error of the two-step BDF for the incompressible Navier-Stokes problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 757-764 %V 38 %N 5 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004037/ %R 10.1051/m2an:2004037 %G en %F M2AN_2004__38_5_757_0
Emmrich, Etienne. Error of the two-step BDF for the incompressible Navier-Stokes problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 5, pp. 757-764. doi: 10.1051/m2an:2004037
[1] , and, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39 (1982) 339-375. | Zbl
[2] , Analysis von Zeitdiskretisierungen des inkompressiblen Navier-Stokes-Problems. Cuvillier, Göttingen (2001). | Zbl
[3] , Error of the two-step BDF for the incompressible Navier-Stokes problem. Preprint 741, TU Berlin (2002).
[4] and, Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979). | Zbl | MR
[5] and, Finite element approximation of the nonstationary Navier-Stokes problem, Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353-384. | Zbl
[6] and, Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20 (2000) 633-667. | Zbl
[7] , Eine Analyse des Zwischenschritt--Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Preprint 94-01 (SFB 359), Univ. Heidelberg (1994). | Zbl
[8] , Projection and Quasi-compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Teubner, Stuttgart (1997). | Zbl | MR
[9] , Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland Publ. Company, Amsterdam (1977). | Zbl | MR
[10] , Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Reg. Confer. Ser. Appl. Math. SIAM 41 (1985). | Zbl | MR
Cité par Sources :





