The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank-Nicholson type scheme. The system of equations obtained by discretization is solved by a version of the Picard iteration method. The accuracy of the proposed algorithm is investigated.
Keywords: Timoshenko nonlinear system, beam, Galerkin method, Crank-Nicholson scheme, Picard process
@article{M2AN_2004__38_1_1_0,
author = {Peradze, Jemal},
title = {The existence of a solution and a numerical method for the {Timoshenko} nonlinear wave system},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1--26},
year = {2004},
publisher = {EDP Sciences},
volume = {38},
number = {1},
doi = {10.1051/m2an:2004001},
mrnumber = {2073928},
zbl = {1080.35159},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2004001/}
}
TY - JOUR AU - Peradze, Jemal TI - The existence of a solution and a numerical method for the Timoshenko nonlinear wave system JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 1 EP - 26 VL - 38 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2004001/ DO - 10.1051/m2an:2004001 LA - en ID - M2AN_2004__38_1_1_0 ER -
%0 Journal Article %A Peradze, Jemal %T The existence of a solution and a numerical method for the Timoshenko nonlinear wave system %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 1-26 %V 38 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2004001/ %R 10.1051/m2an:2004001 %G en %F M2AN_2004__38_1_1_0
Peradze, Jemal. The existence of a solution and a numerical method for the Timoshenko nonlinear wave system. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 1, pp. 1-26. doi: 10.1051/m2an:2004001
[1] , On a class of functional partial differential equations. AN SSSR, Moscow, Selected Works. Izd. 3 (1961) 323-331.
[2] and, Dynamic buckling of a nonlinear Timoshenko beam. SIAM J. Appl. Math. 34 (1979) 230-301. | Zbl
[3] , Théorie des vibrations. Béranger, Paris (1947). | JFM
[4] , On an initial boundary value problem for the nonlinear Timoshenko beam. Ann. Acad. Bras. Cienc. 63 (1991) 115-125. | Zbl
Cité par Sources :





