Let be an odd function of a class such that and increases on . We approximate the positive solution of on with homogeneous Dirichlet boundary conditions by the solution of on with adequate non-homogeneous Dirichlet conditions. We show that the error tends to zero exponentially fast, in the uniform norm.
Keywords: semilinear elliptic equations, full-space problems, approximation by finite domains
@article{M2AN_2003__37_1_117_0,
author = {Kolli, Messaoud and Schatzman, Michelle},
title = {Approximation of a semilinear elliptic problem in an unbounded domain},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {117--132},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {1},
doi = {10.1051/m2an:2003017},
mrnumber = {1972653},
zbl = {1137.35364},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2003017/}
}
TY - JOUR AU - Kolli, Messaoud AU - Schatzman, Michelle TI - Approximation of a semilinear elliptic problem in an unbounded domain JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 117 EP - 132 VL - 37 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003017/ DO - 10.1051/m2an:2003017 LA - en ID - M2AN_2003__37_1_117_0 ER -
%0 Journal Article %A Kolli, Messaoud %A Schatzman, Michelle %T Approximation of a semilinear elliptic problem in an unbounded domain %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 117-132 %V 37 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003017/ %R 10.1051/m2an:2003017 %G en %F M2AN_2003__37_1_117_0
Kolli, Messaoud; Schatzman, Michelle. Approximation of a semilinear elliptic problem in an unbounded domain. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 1, pp. 117-132. doi: 10.1051/m2an:2003017
[1] and, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1084-1095.
[2] , Analyse fonctionnelle. Masson, Paris (1983). Théorie et applications [Theory and applications]. | Zbl | MR
[3] Xinfu Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differential Equations 96 (1992) 116-141. | Zbl
[4] and, Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York, Toronto, London (1955). | Zbl | MR
[5] Fife and L.A. Peletier, Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43 (1992) 984-998. | Zbl
[6] and, An approximation theory for boundary value problems on infinite intervals. Computing 24 (1980) 227-239. | Zbl
[7] and, Development of interfaces in . Proc. Roy. Soc. Edinburgh Sect. A 116 (1990) 207-220. | Zbl
[8] and, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. | Zbl
[9] and, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. | Zbl
[10] , and, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992) 1097-1123. | Zbl
[11] and, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | Zbl | MR
[12] and, Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains. Math. Comp. 48 (1987) 449-470. | Zbl
[13] and, Exact boundary conditions at an artificial boundary for partial differential equations in cylinders. SIAM J. Math. Anal. 17 (1986) 322-341. | Zbl
[14] , Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differential Geom. 38 (1993) 417-461. | Zbl
[15] and, Steady state and periodic solution paths: their bifurcations and computations, in Numerical methods for bifurcation problems, Dortmund (1983). Birkhäuser, Basel (1984) 219-246. | Zbl
[16] , Asymptotic boundary conditions for ordinary differential equations. Ph.D. thesis, California Institute of Technology (1980).
[17] , A theory for the approximation of solutions of boundary value problems on infinite intervals. SIAM J. Math. Anal. 13 (1982) 484-513. | Zbl
[18] , On the stability of the saddle solution of Allen-Cahn's equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1241-1275. | Zbl
Cité par Sources :





