The Boltzmann-Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child-Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child-Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child-Langmuir regime by performing detailed numerical comparisons between the simulation of the Boltzmann-Poisson system and the Child-Langmuir equations in test problems.
Keywords: Boltzmann-Poisson system, Child-Langmuir limit, WENO schemes, semiconductor devices
Cáceres, María-José  ; Carrillo, José-Antonio  ; Degond, Pierre 1
@article{M2AN_2002__36_6_1161_0,
author = {C\'aceres, Mar{\'\i}a-Jos\'e and Carrillo, Jos\'e-Antonio and Degond, Pierre},
title = {The {Child-Langmuir} limit for semiconductors : a numerical validation},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1161--1176},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {6},
doi = {10.1051/m2an:2003011},
zbl = {1028.35102},
mrnumber = {1958663},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2003011/}
}
TY - JOUR AU - Cáceres, María-José AU - Carrillo, José-Antonio AU - Degond, Pierre TI - The Child-Langmuir limit for semiconductors : a numerical validation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 1161 EP - 1176 VL - 36 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003011/ DO - 10.1051/m2an:2003011 LA - en ID - M2AN_2002__36_6_1161_0 ER -
%0 Journal Article %A Cáceres, María-José %A Carrillo, José-Antonio %A Degond, Pierre %T The Child-Langmuir limit for semiconductors : a numerical validation %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 1161-1176 %V 36 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003011/ %R 10.1051/m2an:2003011 %G en %F M2AN_2002__36_6_1161_0
Cáceres, María-José; Carrillo, José-Antonio; Degond, Pierre. The Child-Langmuir limit for semiconductors : a numerical validation. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1161-1176. doi: 10.1051/m2an:2003011
[1] , and, Asymptotic analysis of the transient Vlasov-Poisson system for a plane diode. Asymptot. Anal. 16 (1998) 25-48. | Zbl
[2] and, Ballistic structure in the electron distribution function of small semiconducting structures: General features and specific trends. Phys. Rev. B 36 (1987) 1487-1502.
[3] , The Child-Langmuir regime for electron transport in a plasma including a background of positive ions. Math. Models Methods Appl. Sci. 4 (1994) 409-438.
[4] , Convergence of the Child-Langmuir asymptotics of the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 27 (1996) 92-109. | Zbl
[5] , Étude de modèles asymptotiques de transport de particules chargées: Asymptotique de Child-Langmuir. Ph.D. thesis.
[6] and, The Child-Langmuir law for the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 26 (1995) 364-398. | Zbl
[7] and, The Child-Langmuir law in the kinetic theory of charged particles: semiconductors models. Mathematical problems in semiconductor physics, Rome (1993) 76-102. Longman, Harlow, Pitman Res. Notes Math. Ser. 340 (1995). | Zbl
[8] , and, The Child-Langmuir asymptotics for magnetized flows. Asymptot. Anal. 20 (1999) 97-13. | Zbl
[9] , and, On a mathemaical model of hot-carrier injection in semiconductors. Math. Methods Appl. Sci. 17 (1994) 1193-1212. | Zbl
[10] ,, and, Comparison of Monte Carlo and deterministic simulations of a silicon diode. IMA series (to be published). | Zbl
[11] , and, Computational macroscopic approximations to the 1-D relaxation-time kinetic system for semiconductors. Phys. D 146 (2000) 289-306. | Zbl
[12] and, An asymptotic analysis of the one-dimensional Vlasov-Poisson system: the Child-Langmuir law. Asymptot. Anal. 4 (1991) 187-214. | Zbl
[13] and, On a penalization of the Child-Langmuir emission condition for the one-dimensional Vlasov-Poisson equation. Asymptot. Anal. 6 (1992) 1-27.
[14] and, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202-228. | Zbl
[15] and, Electrical discharges in gases: Part II, fundamental phenomena in electrical discharges. Rev. Modern Phys. 3 (1931) 191-257.
[16] , and, Semiconductor Equations. Springer, New York (1990). | Zbl | MR
[17] , Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (A. Quarteroni Ed.). Springer, Lecture Notes in Math. 1697 (1998) 325-432. | Zbl
[18] and, Ballistic transport in semiconductors at low temperature for low-power high-speed logic. IEEE Trans. Electron Dev. ED-26 (1979) 1677-1683.
[19] and, Near ballistic transport in GaAs devices at 77 K. Solid-State Electron 24 (1991) 11-18.
Cité par Sources :






