In this paper, we prove the convergence of the current defined from the Schrödinger-Poisson system with the presence of a strong magnetic field toward a dissipative solution of the Euler equations.
Keywords: quasi-neutral plasmas, semi-classical limit, modulated energy
@article{M2AN_2002__36_6_1071_0,
author = {Puel, Marjolaine},
title = {Convergence of the {Schr\"odinger-Poisson} system to the {Euler} equations under the influence of a large magnetic field},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {1071--1090},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {6},
doi = {10.1051/m2an:2003006},
mrnumber = {1958659},
zbl = {1137.76836},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2003006/}
}
TY - JOUR AU - Puel, Marjolaine TI - Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 1071 EP - 1090 VL - 36 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2003006/ DO - 10.1051/m2an:2003006 LA - en ID - M2AN_2002__36_6_1071_0 ER -
%0 Journal Article %A Puel, Marjolaine %T Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 1071-1090 %V 36 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2003006/ %R 10.1051/m2an:2003006 %G en %F M2AN_2002__36_6_1071_0
Puel, Marjolaine. Convergence of the Schrödinger-Poisson system to the Euler equations under the influence of a large magnetic field. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1071-1090. doi: 10.1051/m2an:2003006
[1] and, The two-dimensional Wigner-Poisson problem for an electron gas in the charge neutral case. Math. Methods Appl. Sci. 14 (1991) 595-613. | Zbl
[2] , Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25 (2000) 737-754. | Zbl
[3] , An introduction to nonlinear Schrödinger equations, in: Textos de méthodos Mathemàticas 26. Universidad Federal do Rio de Janeiro (1993).
[4] , and, Mécanique quantique. Hermann (1973).
[5] ,, and, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. | Zbl
[6] , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthiers-Villars, Paris (1969). | Zbl | MR
[7] , Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford Lecture in Mathematics and its Applications. Oxford University Press, New York (1996). | Zbl | MR
[8] and, Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. | Zbl
[9] and, The classical limit of a self-consistent quantum-Vlasov equation in D. Math. Models Methods Appl. Sci. 3 (1993) 109-124. | Zbl
[10] , Convergence of the Schrödinger-Poisson system to the incompressible Euler equations. Preprint LAN, Université Paris VI (2001). | Zbl | MR
[11] , Études variationnelle et asymptotique de problèmes en mécanique des fluides et des plasmas. Ph.D. thesis, Université Paris VI (2001).
Cité par Sources :





