First-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier–Stokes equations with L2 initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier–Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete L2(0, t$$; H1) norm when t$$ is smaller than some constant. Numerical examples are provided to support the theoretical analysis.
Keywords: Navier–Stokes equations, $$2 initial data, semi-implicit Euler scheme, finite element method, error estimate
@article{M2AN_2022__56_6_2105_0,
author = {Li, Buyang and Ma, Shu and Ueda, Yuki},
title = {Analysis of fully discrete finite element methods for {2D} {Navier{\textendash}Stokes} equations with critical initial data},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {2105--2139},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {6},
doi = {10.1051/m2an/2022073},
mrnumber = {4504129},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022073/}
}
TY - JOUR AU - Li, Buyang AU - Ma, Shu AU - Ueda, Yuki TI - Analysis of fully discrete finite element methods for 2D Navier–Stokes equations with critical initial data JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 2105 EP - 2139 VL - 56 IS - 6 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022073/ DO - 10.1051/m2an/2022073 LA - en ID - M2AN_2022__56_6_2105_0 ER -
%0 Journal Article %A Li, Buyang %A Ma, Shu %A Ueda, Yuki %T Analysis of fully discrete finite element methods for 2D Navier–Stokes equations with critical initial data %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 2105-2139 %V 56 %N 6 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022073/ %R 10.1051/m2an/2022073 %G en %F M2AN_2022__56_6_2105_0
Li, Buyang; Ma, Shu; Ueda, Yuki. Analysis of fully discrete finite element methods for 2D Navier–Stokes equations with critical initial data. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2105-2139. doi: 10.1051/m2an/2022073
[1] , Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, New York (1977). | MR | Zbl
[2] and , Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. | MR | Zbl | DOI
[3] and , Navier–Stokes equations: theory and approximation. Handb. Numer. Anal. 6 (1998) 503–689. | MR | Zbl
[4] , Error analysis for a second order scheme for the Navier–Stokes equations. Appl. Numer. Math. 50 (2004) 93–119. | MR | Zbl | DOI
[5] and , Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45 (2007) 837–869. | MR | Zbl | DOI
[6] , Galerkin Approximations for the Navier–Stokes Equations. Harvard University, August (1976).
[7] and , Unconditional convergence and optimal error estimates of the Crank-Nicolson extrapolation FEM for the nonstationary Navier–Stokes equations. Comput. Math. Appl. 75 (2018) 134–152. | MR | DOI
[8] , and , On error estimates of the pressure-correction projection methods for the time-dependent Navier–Stokes equations. Int. J. Numer. Anal. Mod. 8 (2011) 70–85. | MR | Zbl
[9] , A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier–Stokes equations. Math. Comp. 82 (2013) 1953–1973. | MR | Zbl | DOI
[10] , and , Numerical analysis of filter-based stabilization for evolution equations. SIAM J. Numer. Anal. 50 (2012) 2307–2335. | MR | Zbl | DOI
[11] , , , and , The stabilized extrapolated trapezoidal finite-element method for the Navier–Stokes equations. Comput. Method. Appl. Mech. Eng. 198 (2009) 958–974. | MR | Zbl | DOI
[12] , and , A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Modeling 17 (2020) 254–280. | MR
[13] , , and , Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier–Stokes equations. ESAIM: M2AN 48 (2014) 765–793. | MR | Zbl | Numdam | DOI
[14] , On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29 (1992) 57–77. | MR | Zbl | DOI
[15] , On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62 (1992) 49–73. | MR | Zbl | DOI
[16] and , Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37 (2000) 799–826. | MR | Zbl | DOI
[17] , and , Numerical analysis of modular VMS methods with nonlinear eddy viscosity for the Navier–Stokes equations. Int. J. Numer. Anal. Mod. 10 (2013) 943–971. | MR | Zbl
[18] and , Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition. Numer. Math. 107 (2007) 533–557. | MR | Zbl | DOI
[19] , and , On a higher order accurate fully discrete Galerkin approximation to the Navier–Stokes equations. Math. Comput. 39 (1982) 339–375. | MR | Zbl | DOI
[20] and , Convergence analysis for a higher order scheme for the time-dependent Navier–Stokes equations. Appl. Math. Comput. 218 (2012) 8269–8278. | MR | Zbl
[21] and , Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44 (2006) 2159–2197. | MR | Zbl | DOI
[22] , and , A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50 (2012) 3084–3109. | MR | Zbl | DOI
[23] , and , Postprocessing finite-element methods for the Navier–Stokes equations: the fully discrete case. SIAM J. Numer. Anal. 47 (2009) 596–621. | MR | Zbl | DOI
[24] , An energy-and helicity-conserving finite element scheme for the Navier–Stokes equations. SIAM J. Numer. Anal. 45 (2007) 1622–1638. | MR | Zbl | DOI
[25] , , and , Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA J. Numer. Anal. 39 (2019) 1747–1786. | MR | DOI
[26] , and , Symmetric pressure stabilization for equal order finite element approximations to the time-dependent Navier–Stokes equations. IMA J. Numer. Anal. 41 (2021) 1093–1129. | MR | DOI
[27] and , A discontinuous subgrid eddy viscosity method for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 43 (2005) 1572–1595. | MR | Zbl | DOI
[28] and , Approximation of the global attractor for the incompressible Navier–Stokes equations. IMA J. Numer. Anal. 20 (2000) 633–667. | MR | Zbl | DOI
[29] , The Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations with nonsmooth initial data. Numer. Meth. Partial Diff. Equ. 28 (2012) 155–187. | MR | Zbl | DOI
[30] , Stability and error analysis for a spectral Galerkin method for the Navier–Stokes equations with or initial data. Numer. Meth. Partial Diff. Equ. 21 (2005) 875–904. | MR | Zbl | DOI
[31] , Critical Function Spaces for the Wellposedness of the Navier–Stokes Initial Value Problem. Springer International Publishing, Cham (2016) 1–39.
[32] , Stability and error analysis for spectral Galerkin method for the Navier–Stokes equations with initial data. Numer. Meth. Partial Diff. Equ. 24 (2008) 79–103. | MR | Zbl | DOI
[33] and , Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math. Comput. 76 (2007) 115–136. | MR | Zbl | DOI
[34] and , A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J. Sci. Comput. 87 (2021) 1–16. | MR
[35] and , Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83 (2014) 15–36. | MR | Zbl | DOI
[36] and , Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: M2AN 19 (1985) 111–143. | MR | Zbl | Numdam | DOI
[37] and , The Scott–Vogelius finite elements revisited. Math. Comput. 88 (2019) 515–529. | MR | DOI
[38] and , Theory and Practice of Finite Elements. Applied Mathematical Sciences. Vol. 159. Springer-Verlag, New York (2004). | MR | Zbl | DOI
[39] , Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer-Verlag, New York (2006). | MR | Zbl
[40] and , Sobolev Spaces, 2nd edition. Academic Press, Amsterdam (2003). | MR | Zbl
[41] , , A regularity for the Stokes problem in a convex polygon, J. Funct. Anal. 21 (1976) 397–431. | MR | Zbl | DOI
[42] and , Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI
[43] and , Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. | MR | Zbl | DOI
[44] and , An exponential-type integrator for the KdV equation. Numer. Math. 136 (2017) 1117–1137. | MR | DOI
[45] and , Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18 (2018) 731–755. | MR | DOI
[46] and , A general framework of low regularity integrators. SIAM J. Numer. Anal. 59 (2021) 1735–1768. | MR | DOI
[47] , Compact sets in the space . Annali di Matematica pura ed applicata 146 (1986) 65–96. | MR | Zbl | DOI
Cité par Sources :





