Penalization method for the Navier–Stokes–Fourier system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1911-1938

We apply the method of penalization to the Dirichlet problem for the Navier–Stokes–Fourier system governing the motion of a general viscous compressible fluid confined to a bounded Lipschitz domain. The physical domain is embedded into a large cube on which the periodic boundary conditions are imposed. The original boundary conditions are enforced through a singular friction term in the momentum equation and a heat source/sink term in the internal energy balance. The solutions of the penalized problem are shown to converge to the solution of the limit problem. In particular, we extend the available existence theory to domains with rough (Lipschitz) boundary. Numerical experiments are performed to illustrate the efficiency of the method.

DOI : 10.1051/m2an/2022063
Classification : 35A01, 76M12, 76N06
Keywords: Navier–Stokes–Fourier system, penalization method, Dirichlet problem, finite volume method
@article{M2AN_2022__56_6_1911_0,
     author = {Basari\'c, Danica and Feireisl, Eduard and Luk\'a\v{c}ov\'a-Medvid{\textquoteright}ov\'a, M\'aria and Mizerov\'a, Hana and Yuan, Yuhuan},
     title = {Penalization method for the {Navier{\textendash}Stokes{\textendash}Fourier} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1911--1938},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022063},
     mrnumber = {4481122},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022063/}
}
TY  - JOUR
AU  - Basarić, Danica
AU  - Feireisl, Eduard
AU  - Lukáčová-Medvid’ová, Mária
AU  - Mizerová, Hana
AU  - Yuan, Yuhuan
TI  - Penalization method for the Navier–Stokes–Fourier system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1911
EP  - 1938
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022063/
DO  - 10.1051/m2an/2022063
LA  - en
ID  - M2AN_2022__56_6_1911_0
ER  - 
%0 Journal Article
%A Basarić, Danica
%A Feireisl, Eduard
%A Lukáčová-Medvid’ová, Mária
%A Mizerová, Hana
%A Yuan, Yuhuan
%T Penalization method for the Navier–Stokes–Fourier system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1911-1938
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022063/
%R 10.1051/m2an/2022063
%G en
%F M2AN_2022__56_6_1911_0
Basarić, Danica; Feireisl, Eduard; Lukáčová-Medvid’ová, Mária; Mizerová, Hana; Yuan, Yuhuan. Penalization method for the Navier–Stokes–Fourier system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1911-1938. doi: 10.1051/m2an/2022063

[1] R. Beyer and R. J. Leveque, Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29 (1992) 332–364. | MR | Zbl | DOI

[2] V. Bruneau, A. Doradoux and P. Fabrie, Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body. ESAIM Math. Model. Numer. Anal. 52 (2018) 1417–1436. | MR | Zbl | Numdam | DOI

[3] N. Chaudhuri and E. Feireisl, Navier–Stokes–Fourier system with Dirichlet boundary conditions. (2021). DOI: . | DOI | MR

[4] P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004). | MR | Zbl

[5] E. Feireisl and A. Novotný, Weak–strong uniqueness property for the full Navier–Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012) 683–706. | MR | Zbl | DOI

[6] E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, 2nd edition. Advances in Mathematical Fluid Mechanics. Birkhäuser (2017). | MR | Zbl

[7] E. Feireisl, M. Lukáčová-Medviďová, H. Mizerová and B. She, On the convergence of a finite volume method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 41 (2021) 2388–2422. | MR | DOI

[8] R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111 (1994) 283–303. | MR | Zbl | DOI

[9] R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 112 (1994) 133–148. | MR | Zbl | DOI

[10] J. S. Hesthaven, A stable penalty method for the compressible Navier-Stokes equations. II. One-dimensional domain decomposition schemes. SIAM J. Sci. Comput. 18 (1997) 658–685. | MR | Zbl | DOI

[11] J. S. Hesthaven, A stable penalty method for the compressible Navier-Stokes equations. III. Multidimensional domain decomposition schemes. SIAM J. Sci. Comput. 20 (1998) 62–93. | MR | Zbl | DOI

[12] M. A. Hyman, Non-iterative numerical solution of boundary-value problems. Appl. Sci. Res. Sec. B 2 (1952) 325–351. | MR | Zbl | DOI

[13] M. Lukáčová-Medviďová, H. Mizerová and B. She, New invariant domain preserving finite volume schemes for compressible flows. In: Recent Advances in Numerical Methods for Hyperbolic PDE Systems. Springer (2021) 131–153. | DOI

[14] P. Manneville, Rayleigh-Bénard convection: thirty years of experimental, theoretical, and modeling work. In: Dynamics of Spatio-temporal Cellular Structures, edited by I. Mutabazi, J. E. Wesfreid and E. Guyon Springer (2006) 41–64. | DOI

[15] B. Maury, Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47 (2009) 1126–1148. | MR | Zbl | DOI

[16] D. Medková, Boundary Value Problems on Bounded and Unbounded Lipschitz Domains. Springer-Verlag, Cham (2018).

[17] C. S. Peskin, Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10 (1972) 252–271. | Zbl | DOI

[18] C. S. Peskin, The immersed boundary method. Acta Numer. 11 (2002) 479–517. | MR | Zbl | DOI

[19] N. Saito and G. Zhou, Analysis of the fictitious domain method with an L 2 -penalty for elliptic problems. Numer. Funct. Anal. Optim. 36 (2015) 501–527. | MR | DOI

[20] S. Zhang, A domain embedding method for mixed boundary value problems. C. R. Math. Acad. Sci. Paris 343 (2006) 287–290. | MR | Zbl | DOI

[21] G. Zhou and N. Saito, Analysis of the fictitious domain method with penalty for elliptic problems. Jpn. J. Ind. Appl. Math. 31 (2014) 57–85. | MR | Zbl | DOI

Cité par Sources :