We apply the method of penalization to the Dirichlet problem for the Navier–Stokes–Fourier system governing the motion of a general viscous compressible fluid confined to a bounded Lipschitz domain. The physical domain is embedded into a large cube on which the periodic boundary conditions are imposed. The original boundary conditions are enforced through a singular friction term in the momentum equation and a heat source/sink term in the internal energy balance. The solutions of the penalized problem are shown to converge to the solution of the limit problem. In particular, we extend the available existence theory to domains with rough (Lipschitz) boundary. Numerical experiments are performed to illustrate the efficiency of the method.
Keywords: Navier–Stokes–Fourier system, penalization method, Dirichlet problem, finite volume method
@article{M2AN_2022__56_6_1911_0,
author = {Basari\'c, Danica and Feireisl, Eduard and Luk\'a\v{c}ov\'a-Medvid{\textquoteright}ov\'a, M\'aria and Mizerov\'a, Hana and Yuan, Yuhuan},
title = {Penalization method for the {Navier{\textendash}Stokes{\textendash}Fourier} system},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1911--1938},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {6},
doi = {10.1051/m2an/2022063},
mrnumber = {4481122},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022063/}
}
TY - JOUR AU - Basarić, Danica AU - Feireisl, Eduard AU - Lukáčová-Medvid’ová, Mária AU - Mizerová, Hana AU - Yuan, Yuhuan TI - Penalization method for the Navier–Stokes–Fourier system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 1911 EP - 1938 VL - 56 IS - 6 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022063/ DO - 10.1051/m2an/2022063 LA - en ID - M2AN_2022__56_6_1911_0 ER -
%0 Journal Article %A Basarić, Danica %A Feireisl, Eduard %A Lukáčová-Medvid’ová, Mária %A Mizerová, Hana %A Yuan, Yuhuan %T Penalization method for the Navier–Stokes–Fourier system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 1911-1938 %V 56 %N 6 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022063/ %R 10.1051/m2an/2022063 %G en %F M2AN_2022__56_6_1911_0
Basarić, Danica; Feireisl, Eduard; Lukáčová-Medvid’ová, Mária; Mizerová, Hana; Yuan, Yuhuan. Penalization method for the Navier–Stokes–Fourier system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1911-1938. doi: 10.1051/m2an/2022063
[1] and , Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29 (1992) 332–364. | MR | Zbl | DOI
[2] , and , Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body. ESAIM Math. Model. Numer. Anal. 52 (2018) 1417–1436. | MR | Zbl | Numdam | DOI
[3] and , Navier–Stokes–Fourier system with Dirichlet boundary conditions. (2021). DOI: . | DOI | MR
[4] , Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004). | MR | Zbl
[5] and , Weak–strong uniqueness property for the full Navier–Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012) 683–706. | MR | Zbl | DOI
[6] and , Singular Limits in Thermodynamics of Viscous Fluids, 2nd edition. Advances in Mathematical Fluid Mechanics. Birkhäuser (2017). | MR | Zbl
[7] , , and , On the convergence of a finite volume method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 41 (2021) 2388–2422. | MR | DOI
[8] , and , A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111 (1994) 283–303. | MR | Zbl | DOI
[9] , and , A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 112 (1994) 133–148. | MR | Zbl | DOI
[10] , A stable penalty method for the compressible Navier-Stokes equations. II. One-dimensional domain decomposition schemes. SIAM J. Sci. Comput. 18 (1997) 658–685. | MR | Zbl | DOI
[11] , A stable penalty method for the compressible Navier-Stokes equations. III. Multidimensional domain decomposition schemes. SIAM J. Sci. Comput. 20 (1998) 62–93. | MR | Zbl | DOI
[12] , Non-iterative numerical solution of boundary-value problems. Appl. Sci. Res. Sec. B 2 (1952) 325–351. | MR | Zbl | DOI
[13] , and , New invariant domain preserving finite volume schemes for compressible flows. In: Recent Advances in Numerical Methods for Hyperbolic PDE Systems. Springer (2021) 131–153. | DOI
[14] , Rayleigh-Bénard convection: thirty years of experimental, theoretical, and modeling work. In: Dynamics of Spatio-temporal Cellular Structures, edited by , and Springer (2006) 41–64. | DOI
[15] , Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47 (2009) 1126–1148. | MR | Zbl | DOI
[16] , Boundary Value Problems on Bounded and Unbounded Lipschitz Domains. Springer-Verlag, Cham (2018).
[17] , Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10 (1972) 252–271. | Zbl | DOI
[18] , The immersed boundary method. Acta Numer. 11 (2002) 479–517. | MR | Zbl | DOI
[19] and , Analysis of the fictitious domain method with an -penalty for elliptic problems. Numer. Funct. Anal. Optim. 36 (2015) 501–527. | MR | DOI
[20] , A domain embedding method for mixed boundary value problems. C. R. Math. Acad. Sci. Paris 343 (2006) 287–290. | MR | Zbl | DOI
[21] and , Analysis of the fictitious domain method with penalty for elliptic problems. Jpn. J. Ind. Appl. Math. 31 (2014) 57–85. | MR | Zbl | DOI
Cité par Sources :





