A C 0 Interior Penalty Discontinuous Galerkin Method and an equilibrated a posteriori error estimator for a nonlinear fourth order elliptic boundary value problem of p -biharmonic type
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2051-2079

We consider a C0 Interior Penalty Discontinuous Galerkin (C0IPDG) approximation of a nonlinear fourth order elliptic boundary value problem of p-biharmonic type and an equilibrated a posteriori error estimator. The C0IPDG method can be derived from a discretization of the corresponding minimization problem involving a suitably defined reconstruction operator. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in the broken W$$ norm in terms of the associated primal and dual energy functionals. It requires the construction of an equilibrated flux and an equilibrated moment tensor based on a three-field formulation of the C0IPDG approximation. The relationship with a residual-type a posteriori error estimator is studied as well. Numerical results illustrate the performance of the suggested approach.

DOI : 10.1051/m2an/2022058
Classification : 35K35, 35K55, 65M60
Keywords: C0 Interior Penalty Discontinuous Galerkin approximation, nonlinear fourth order elliptic problem of $$-biharmonic type, $$ error estimation, equilibration
@article{M2AN_2022__56_6_2051_0,
     author = {Hoppe, Ronald H. W.},
     title = {A  $C^0$ {Interior} {Penalty} {Discontinuous} {Galerkin} {Method} and an equilibrated \protect\emph{a posteriori} error estimator for a nonlinear fourth order elliptic boundary value problem of $p$-biharmonic type},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2051--2079},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022058},
     mrnumber = {4481121},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022058/}
}
TY  - JOUR
AU  - Hoppe, Ronald H. W.
TI  - A  $C^0$ Interior Penalty Discontinuous Galerkin Method and an equilibrated a posteriori error estimator for a nonlinear fourth order elliptic boundary value problem of $p$-biharmonic type
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 2051
EP  - 2079
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022058/
DO  - 10.1051/m2an/2022058
LA  - en
ID  - M2AN_2022__56_6_2051_0
ER  - 
%0 Journal Article
%A Hoppe, Ronald H. W.
%T A  $C^0$ Interior Penalty Discontinuous Galerkin Method and an equilibrated a posteriori error estimator for a nonlinear fourth order elliptic boundary value problem of $p$-biharmonic type
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 2051-2079
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022058/
%R 10.1051/m2an/2022058
%G en
%F M2AN_2022__56_6_2051_0
Hoppe, Ronald H. W. A  $C^0$ Interior Penalty Discontinuous Galerkin Method and an equilibrated a posteriori error estimator for a nonlinear fourth order elliptic boundary value problem of $p$-biharmonic type. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2051-2079. doi: 10.1051/m2an/2022058

[1] C. Amrouche and N. E. H. Seloula, L p -theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions. Math. Models Methods Appl. Sci. 23 (2013) 37–92. | MR | Zbl | DOI

[2] O. Axelsson and I. Gustafsson, An iterative solver for a mixed variable variational formulation of the (first) biharmonic problem. Comput. Methods Appl. Mech. Eng. 20 (1979) 9–16. | MR | Zbl | DOI

[3] O. Axelsson and N. Munksgaard, A class of preconditioned conjugate gradient methods for the solution of a mixed finite element discretization of the biharmonic operator. Int. J. Numer. Methods Eng. 14 (1979) 1001–1019. | MR | Zbl | DOI

[4] J. W. Barrett and W. B. Liu, Finite element approximation of the p -Laplacian. Math. Comput. 204 (1993) 523–537. | MR | Zbl

[5] S. Bartels, Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comput. 293 (2015) 1217–1240. | MR

[6] F. Bernis, J. Garcia-Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order. Adv. Differ. Equ. 1 (1996) 219–240. | MR | Zbl

[7] J. F. Bonder and J. D. Rossi, A fourth order elliptic equation with nonlinear boundary conditions. Nonlinear Anal. 49 (2002) 1037–1047. | MR | Zbl | DOI

[8] D. Braess, Finite Elements, Theory, Fast Solvers and Applications in Solid Mechanics, 3rd edition. Cambridge University Press, Cambridge (2007). | Zbl

[9] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p -robust. Comp. Meth. Applied Mech. Eng. 198 (2009) 1189–1197. | MR | Zbl | DOI

[10] D. Braess, T. Fraunholz and R. H. W. Hoppe, An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52 (2014) 2121–2136. | MR | Zbl | DOI

[11] D. Braess, R. H. W. Hoppe and C. Linsenmann, A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: M2AN 52 (2019) 2479–2504. | MR | Zbl | Numdam | DOI

[12] S. C. Brenner and L.-Y. Sung, C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 2223 (2005) 83–118. | MR | Zbl | DOI

[13] S. C. Brenner, T. Gudi and L.-Y. Sung, An a posteriori error estimator for a quadratic C 0 -interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30 (2010) 777–798. | MR | Zbl | DOI

[14] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, Berlin-Heidelberg-New York (1991). | MR | Zbl | DOI

[15] A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29 (2009) 827–855. | MR | Zbl | DOI

[16] Q. H. Choi and T. Jung, Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equations. Acta Math. Sci. 19 (1999) 316–374. | MR | Zbl

[17] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002). | MR | Zbl | DOI

[18] P. G. Ciarlet and P. A. Raviart, A mixed finite element method for the biharmonic equation. In: Proceedings of a Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, edited by C. De Boor. Academic Press, New York (1974) 125–145. | MR | Zbl | DOI

[19] B. Cockburn, B. Dong and J. Guzmán, A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40 (2009) 141–187. | MR | Zbl | DOI

[20] M. Crouzeix and V. Thomée, The stability in L p and W p 1 of the L 2 projection onto finite element function spaces. Math. Comput. 48 (1987) 521–532. | MR | Zbl

[21] Y. Deng and G. Wang, On inhomogeneous biharmonic equations involving critical exponents. Proc. R. Soc. Edinburgh Sect. A 129 (1999) 925–946. | MR | Zbl | DOI

[22] L. Diening, D. Kröner, M. Růžička and I. Toulopoulos, A local discontinuous Galerkin approximation for systems with p -structure. IMA J. Numer. Anal. 34 (2013) 1447–1488. | MR | Zbl | DOI

[23] D. A. Dipietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer, Berlin Heidelberg-New York (2012). | MR | Zbl | DOI

[24] M. Dobrowolski, On finite element methods for nonlinear elliptic problems with corners. In: Springer Lecture Notes in Mathematics. Vol. 1121. Berlin-Heidelberg-New York, New York, Heidelberg (1986) 85–103. | Zbl

[25] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl | DOI

[26] M. R. Dostanić, Inequality of Poincaré-Friedrichs on L p spaces. Matematički Vesnik 57 (2005) 11–14. | MR | Zbl

[27] J. Douglas Jr, T. Dupont, P. Percell and R. Scott, A family of C 1 finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. RAIRO Anal. Numér. 13 (1979) 227–255. | MR | Numdam | Zbl | DOI

[28] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. SIAM, Philadelphia (1999). | MR | Zbl | DOI

[29] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191 (2002) 3669–3750. | MR | Zbl | DOI

[30] E. H. Georgoulis and P. Houston, Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29 (2009) 573–594. | MR | Zbl | DOI

[31] E. H. Georgoulis, P. Houston and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth order elliptic problems. IMA J. Numer. Anal. 31 (2011) 281–298. | MR | Zbl | DOI

[32] R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167–212. | MR | Zbl | DOI

[33] T. Gudi, N. Nataraj and A. K. Pani, Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37 (2008) 139–161. | MR | Zbl | DOI

[34] T. Gyulov and G. Moroşanu, On a class of boundary value problems involving the p -biharmonic operator. J. Math. Anal. Appl. 367 (2010) 43–57. | MR | Zbl | DOI

[35] N. Katzourakis and T. Pryer, On the numerical approximation of p -biharmonic and -biharmonic functions. Numer. Methods Part. Differ. Eq. 35 (2019) 155–180. | MR | DOI

[36] U. Langer, On the numerical solution of the first biharmonic boundary value problem. Numer. Math. 50 (1986) 291–310. | MR | Zbl

[37] A. M. Micheletti, A. Pistoia and C. Saccon, Three solutions of a fourth order elliptic problem via variational theorems of mixed type. Appl. Anal. 75 (2000) 43–59. | MR | Zbl | DOI

[38] I. Mozolevski and E. Süli, A priori error analysis for the h p -version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3 (2003) 1–12. | MR | Zbl | DOI

[39] I. Mozolevski, E. Süli and P. R. Bösing, h p -Version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30 (2007) 465–491. | MR | Zbl | DOI

[40] T. Pryer, Discontinuous Galerkin methods for the p -biharmonic equation from a discrete variational perspective. Electron. Trans. Numer. Anal. 41 (2014) 328–349. | MR | Zbl

[41] N. Rajashekar, S. Chaudhary and V. V. K. Srinivas Kumar, Approximation of p -biharmonic problem using WEB-spline based mesh-free method. Int. J. Nonlinear Sci. Numer. Simul. 20 (2019) 703–712. | MR | DOI

[42] S. I. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp. 69 (2000) 481–500. | MR | Zbl | DOI

[43] S. I. Repin, A Posteriori Estimates for Partial Differential Equations. Vol. 4, Radon Series on Computational and Applied Mathematics. De Gruyter, Berlin (2008). | MR | Zbl | DOI

[44] H. L. Royden and P. Fitzpatrick, Real Analysis. 4th edition. Phi Learning Pvt Ltd., New Delhi (2011). | Zbl

[45] R. Scholz, A mixed method for 4th order problems using linear finite elements. RAIRO Anal. Numér./Numer. Anal. 12 (1978) 85–90. | MR | Numdam | Zbl | DOI

[46] E. Süli and I. Mozolevski, h p -version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196 (2007) 1851–1863. | MR | Zbl | DOI

[47] L. Tartar, Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin–Heidelberg–New York (2007).

[48] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013). | MR | Zbl | DOI

[49] W. Wang and P. Zhao, Nonuniformly nonlinear elliptic equations of p -biharmonic type. J. Math. Anal. Appl. 348 (2008) 730–738. | MR | Zbl | DOI

[50] J. H. Zhang and S. J. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems. Nonlinear Anal. 60 (2005) 221–230. | MR | Zbl | DOI

Cité par Sources :