Shape analyticity and singular perturbations for layer potential operators
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1889-1910

We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image ϕ(∂Ω) of a reference set ∂Ω and we present some real analyticity results for the dependence upon the map ϕ. Then we introduce a perforated domain Ω(ε) with a small hole of size ε and we compute power series expansions that describe the layer potentials on ∂Ω(ε) when the parameter ε approximates the degenerate value ε = 0.

DOI : 10.1051/m2an/2022057
Classification : 31B10, 35J05, 47H30, 35J25, 45A05
Keywords: Single layer potential, double layer potential, Laplace operator, domain perturbation, shape sensitivity analysis, perforated domain, asymptotic behavior, special nonlinear operators
@article{M2AN_2022__56_6_1889_0,
     author = {Dalla Riva, Matteo and Luzzini, Paolo and Musolino, Paolo},
     title = {Shape analyticity and singular perturbations for layer potential operators},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1889--1910},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022057},
     mrnumber = {4467103},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022057/}
}
TY  - JOUR
AU  - Dalla Riva, Matteo
AU  - Luzzini, Paolo
AU  - Musolino, Paolo
TI  - Shape analyticity and singular perturbations for layer potential operators
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1889
EP  - 1910
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022057/
DO  - 10.1051/m2an/2022057
LA  - en
ID  - M2AN_2022__56_6_1889_0
ER  - 
%0 Journal Article
%A Dalla Riva, Matteo
%A Luzzini, Paolo
%A Musolino, Paolo
%T Shape analyticity and singular perturbations for layer potential operators
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1889-1910
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022057/
%R 10.1051/m2an/2022057
%G en
%F M2AN_2022__56_6_1889_0
Dalla Riva, Matteo; Luzzini, Paolo; Musolino, Paolo. Shape analyticity and singular perturbations for layer potential operators. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1889-1910. doi: 10.1051/m2an/2022057

[1] H. Ammari and H. Kang, Polarization and Moment Tensors. Vol. 162 of Applied Mathematical Sciences. Springer, New York (2007). | MR | Zbl

[2] H. Ammari, H. Kang and H. Lee, Layer Potential Techniques in Spectral Analysis. Mathematical Surveys and Monographs. Vol. 153. American Mathematical Society, Providence, RI (2009). | MR | Zbl | DOI

[3] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu and H. Zhang, Mathematical and Computational Methods in Photonics and Phononics. Mathematical Surveys and Monographs. Vol. 235. American Mathematical Society, Providence, RI (2018). | MR | DOI

[4] J. Bochnak, Analytic functions in Banach spaces. Stud. Math. 35 (1970) 273–292. | MR | DOI

[5] A. Charalambopoulos, On the Fréchet differentiability of boundary integral operators in the inverse elastic scattering problem. Inverse Prob. 11 (1995) 1137–1161. | MR | Zbl | DOI

[6] A. Cohen, C. Schwab and J. Zech, Shape holomorphy of the stationary Navier-Stokes equations. SIAM J. Math. Anal. 50 (2018) 1720–1752. | MR | DOI

[7] R. Coifman and Y. Meyer, Lavrentiev’s curves and conformal mappings. Institut Mittag-Leffler, Report No. 5. (1983).

[8] M. Costabel and F. Le Louër, Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: shape differentiability of pseudo-homogeneous boundary integral operators. Integral Equ. Oper. Theory 72 (2012) 509–535. | MR | Zbl | DOI

[9] M. Costabel and F. Le Louër, Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: application to scattering by a homogeneous dielectric obstacle. Integral Equ. Oper. Theory 73 (2012) 17–48. | MR | Zbl | DOI

[10] M. Costabel, M. Dalla Riva, M. Dauge and P. Musolino, Converging expansions for Lipschitz self-similar perforations of a plane sector. Integral Equ. Oper. Theory 88 (2017) 401–449. | MR | DOI

[11] M. Dalla Riva, Potential theoretic methods for the analysis of singularly perturbed problems in linearized elasticity. Ph.D. thesis, University of Padova (2008).

[12] M. Dalla Riva and M. Lanza De Cristoforis, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach. Complex Var. Elliptic Equ. 55 (2010) 771–794. | MR | Zbl | DOI

[13] M. Dalla Riva and M. Lanza De Cristoforis, Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach. Eur. Math. J. 1 (2010) 31–58. | MR | Zbl

[14] M. Dalla Riva and M. Lanza De Cristoforis, Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach. Complex Anal. Oper. Theory 5 (2011) 811–833. | MR | Zbl | DOI

[15] M. Dalla Riva and M. Lanza De Cristoforis, A perturbation result for the layer potentials of general second order differential operators with constant coefficients. J. Appl. Funct. Anal. 5 (2010) 10–30. | MR | Zbl

[16] M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a domain with a small hole. J. Differ. Equ. 252 (2012) 6337–6355. | MR | Zbl | DOI

[17] M. Dalla Riva and P. Musolino, Real analytic families of harmonic functions in a planar domain with a small hole. J. Math. Anal. Appl. 422 (2015) 37–55. | MR | Zbl | DOI

[18] M. Dalla Riva, P. Musolino and S. V. Rogosin, Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole. Asymptotic Anal. 92 (2015) 339–361. | MR | DOI

[19] M. Dalla Riva, P. Musolino and R. Pukhtaievych, Series expansion for the effective conductivity of a periodic dilute composite with thermal resistance at the two-phase interface. Asymptotic Anal. 111 (2019) 217–250. | MR | DOI

[20] M. Dalla Riva, M. Lanza De Cristoforis and P. Musolino, Singularly Perturbed Boundary Value Problems: A Functional Analytic Approach. Springer Nature, Cham (2021). | MR | DOI

[21] M. Dalla Riva, P. Luzzini and P. Musolino, Multi-parameter analysis of the obstacle scattering problem. Inverse Prob. 38 (2022) 17. | MR | DOI

[22] M. Dalla Riva, P. Luzzini, P. Musolino and R. Pukhtaievych, Dependence of effective properties upon regular perturbations. In: Mechanics and Physics of Structured Media: Asymptotic and Integral Equations Methods of Leonid Filshtinsky, edited by I. Andrianov, S. Gluzman and V. Mityushev. Elsevier (2022) 271–301. | DOI

[23] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). | MR | Zbl | DOI

[24] F. Feppon and H. Ammari, High order topological asymptotics: reconciling layer potentials and compound asymptotic expansions. Multiscale Model. Simul.. Preprint . (2021). | HAL | MR

[25] F. Feppon and H. Ammari, Homogenization of sound-absorbing and high-contrast acoustic metamaterials in subcritical regimes. SAM Research Report No. 2021-35. Preprint (2021). | HAL | MR

[26] G. B. Folland, Introduction to Partial Differential Equations, 2nd edition. Princeton University Press, Princeton, NJ (1995). | MR | Zbl

[27] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition. Vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1983). | MR | Zbl

[28] H. Haddar and R. Kress, On the Fréchet derivative for obstacle scattering with an impedance boundary condition. SIAM J. Appl. Math. 65 (2004) 194–208. | MR | Zbl | DOI

[29] P. Hájek and M. Johanis, Smooth Analysis in Banach Spaces. Vol. 19 of de Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, Berlin (2014). | MR | Zbl | DOI

[30] F. Henríquez and C. Schwab, Shape holomorphy of the Calderón projector for the Laplacian in 2 . Integral Equ. Oper. Theory 93 (2021) 40. | MR | DOI

[31] O. Ivanyshyn Yaman and F. Le Louër, Material derivatives of boundary integral operators in electromagnetism and application to inverse scattering problems. Inverse Prob. 32 (2016) 24. | MR

[32] C. Jerez-Hanckes, C. Schwab and J. Zech, Electromagnetic wave scattering by random surfaces: shape holomorphy. Math. Models Methods Appl. Sci. 27 (2017) 2229–2259. | MR | DOI

[33] R. Kress, Linear Integral Equations, 3rd edition. Applied Mathematical Sciences. Vol. 82. Springer-Verlag, New York (2014). | MR | Zbl

[34] R. Kress and L. Päivärinta, On the far field in obstacle scattering. SIAM J. Appl. Math. 59 (1999) 1413–1426. | MR | Zbl | DOI

[35] M. Lanza De Cristoforis, Asymptotic behavior of the conformal representation of a Jordan domain with a small hole in Schauder spaces. Comput. Methods Funct. Theory 2 (2002) 1–27. | MR | Zbl | DOI

[36] M. Lanza De Cristoforis, A domain perturbation problem for the Poisson equation. Complex Var. Theory Appl. 50 (2005) 851–867. | MR | Zbl

[37] M. Lanza De Cristoforis, Perturbation problems in potential theory, a functional analytic approach. J. Appl. Funct. Anal. 2 (2007) 197–222. | MR | Zbl

[38] M. Lanza De Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach. Complex Var. Elliptic Equ. 52 (2007) 945–977. | MR | Zbl | DOI

[39] M. Lanza De Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Anal. München 28 (2008) 63–93. | MR | Zbl

[40] M. Lanza De Cristoforis, Asymptotic behaviour of the solutions of a non-linear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach. Complex Var. Elliptic Equ. 55 (2010) 269–303. | MR | Zbl | DOI

[41] M. Lanza De Cristoforis and P. Musolino, A perturbation result for periodic layer potentials of general second order differential operators with constant coefficients. Far East J. Math. Sci. (FJMS) 52 (2011) 75–120. | MR | Zbl

[42] M. Lanza De Cristoforis and P. Musolino, A real analyticity result for a nonlinear integral operator. J. Integral Equ. Appl. 25 (2013) 21–46. | MR | Zbl

[43] M. Lanza De Cristoforis and L. Preciso, On the analyticity of the Cauchy integral in Schauder spaces. J. Integral Equ. Appl. 11 (1999) 363–391. | MR | Zbl

[44] M. Lanza De Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density. J. Integral Equ. Appl. 16 (2004) 137–174. | MR | Zbl

[45] M. Lanza De Cristoforis and L. Rossi, Real analytic dependence of simple and double layer potentials for the Helmholtz equation upon perturbation of the support and of the density. In: Analytic Methods of Analysis and Differential Equations: AMADE 2006. Camb. Sci. Publ, Cambridge (2008) 193–220. | MR

[46] F. Le Louër, On the Fréchet derivative in elastic obstacle scattering. SIAM J. Appl. Math. 72 (2012) 1493–1507. | MR | Zbl | DOI

[47] P. Luzzini and P. Musolino, Perturbation analysis of the effective conductivity of a periodic composite. Netw. Heterog. Media 15 (2020) 581–603. | MR | DOI

[48] P. Luzzini, P. Musolino and R. Pukhtaievych, Shape analysis of the longitudinal flow along a periodic array of cylinders. J. Math. Anal. Appl. 477 (2019) 1369–1395. | MR | DOI

[49] V. Maz’Ya, S. Nazarov and B. Plamenevskii, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. I. Birkhäuser, Basel (2000).

[50] V. Maz’Ya, S. Nazarov and B. Plamenevskii, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. II. Birkhäuser, Basel (2000). | Zbl

[51] V. G. Maz’Ya, A. B. Movchan and M. J. Nieves, Green’s Kernels and Meso-Scale Approximations in Perforated Domains. Lecture Notes in Mathematics. Vol. 2077. Springer, Berlin (2013). | MR | Zbl

[52] A. D. Michal, M. Wyman, Characterization of complex couple spaces, Ann. Math. 42 (1941) 247–250. | MR | JFM | DOI

[53] G. A. Muñoz, Y. Sarantopoulos and A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps. Stud. Math. 134 (1999) 1–33. | MR | Zbl | DOI

[54] R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Prob. 10 (1994) 431–447. | MR | Zbl | DOI

[55] R. Potthast, Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain. J. Inverse Ill-Posed Probl. 4 (1996) 67–84. | MR | Zbl | DOI

[56] R. Potthast, Domain derivatives in electromagnetic scattering. Math. Methods Appl. Sci. 19 (1996) 1157–1175. | MR | Zbl | DOI

[57] G. Prodi and A. Ambrosetti, Analisi Non Lineare. Editrice Tecnico Scientifica, Pisa (1973). | Zbl

[58] R. Pukhtaievych, Effective conductivity of a periodic dilute composite with perfect contact and its series expansion. Z. Angew. Math. Phys. 69 (2018) 22. | MR | DOI

[59] J. Schauder, Potentialtheoretische Untersuchungen. Math. Z. 33 (1931) 602–640. | MR | JFM | DOI

[60] J. Schauder, Bemerkung zu meiner Arbeit “Potentialtheoretische Untersuchungen I (Anhang)”. Math. Z. 35 (1932) 536–538. | MR | Zbl | DOI

[61] A. E. Taylor, Analysis in complex Banach spaces. Bull. Am. Math. Soc. 49 (1943) 652–669. | MR | Zbl | DOI

[62] T. Valent, Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data. Springer Tracts in Natural Philosophy. Vol. 31. Springer-Verlag, New York (1988). | MR | Zbl | DOI

Cité par Sources :