A nonnegativity preserving scheme for the relaxed Cahn–Hilliard equation with single-well potential and degenerate mobility
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1741-1772

We propose and analyze a finite element approximation of the relaxed Cahn–Hilliard equation [Perthame and Poulain, Eur. J. Appl. Math. 32 (2021) 89–112.] with singular single-well potential of Lennard-Jones type and degenerate mobility that is energy stable and nonnegativity preserving. The Cahn–Hilliard model has recently been applied to model evolution and growth for living tissues. Although the choices of degenerate mobility and singular potential are biologically relevant, they induce difficulties regarding the design of a numerical scheme. We propose a finite element scheme, and we show that it preserves the physical bounds of the solutions thanks to an upwind approach adapted to the finite element method. We propose two different time discretizations leading to a non-linear and a linear scheme. Moreover, we show the well-posedness and convergence of solutions of the non-linear numerical scheme. Finally, we validate our scheme by presenting numerical simulations in one and two dimensions.

DOI : 10.1051/m2an/2022050
Classification : 35Q92, 65M60, 35K55, 35K65, 35K35
Keywords: Degenerate Cahn–Hilliard equation, single-well potential, continuous Galerkin finite elements, upwind scheme, convergence analysis
@article{M2AN_2022__56_5_1741_0,
     author = {Bubba, Federica and Poulain, Alexandre},
     title = {A nonnegativity preserving scheme for the relaxed {Cahn{\textendash}Hilliard} equation with single-well potential and degenerate mobility},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1741--1772},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/m2an/2022050},
     mrnumber = {4454158},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022050/}
}
TY  - JOUR
AU  - Bubba, Federica
AU  - Poulain, Alexandre
TI  - A nonnegativity preserving scheme for the relaxed Cahn–Hilliard equation with single-well potential and degenerate mobility
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1741
EP  - 1772
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022050/
DO  - 10.1051/m2an/2022050
LA  - en
ID  - M2AN_2022__56_5_1741_0
ER  - 
%0 Journal Article
%A Bubba, Federica
%A Poulain, Alexandre
%T A nonnegativity preserving scheme for the relaxed Cahn–Hilliard equation with single-well potential and degenerate mobility
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1741-1772
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022050/
%R 10.1051/m2an/2022050
%G en
%F M2AN_2022__56_5_1741_0
Bubba, Federica; Poulain, Alexandre. A nonnegativity preserving scheme for the relaxed Cahn–Hilliard equation with single-well potential and degenerate mobility. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1741-1772. doi: 10.1051/m2an/2022050

[1] A. Agosti, Discontinuous Galerkin finite element discretization of a degenerate Cahn-Hilliard equation with a single-well potential. Calcolo 56 (2019) 1–47. | MR | DOI

[2] A. Agosti, P. F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani, A Cahn–Hilliard-type equation with application to tumor growth dynamics. Math. Methods Appl. Sci. 40 (2017) 7598–7626. | MR | DOI

[3] A. Agosti, S. Marchesi, G. Scita and P. Ciarletta, Modelling cancer cell budding in-vitro as a self-organised, non-equilibrium growth process. J. Theor. Biol. 492 (2020) 110203. | MR | DOI

[4] L. Almeida, F. Bubba, B. Perthame and C. Pouchol, Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Netw. Heterog. Media 14 (2019) 23–41. | MR | DOI

[5] K. Baba and M. Tabata, On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Anal. Numér. 15 (1981) 3–25. | MR | Zbl | Numdam | DOI

[6] J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286–318. | MR | Zbl | DOI

[7] M. Bessemoulin-Chatard and A. Jüngel, A finite volume scheme for a Keller-Segel model with additional cross-diffusion. IMA J. Numer. Anal. 34 (2014) 96–122. | MR | Zbl | DOI

[8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl

[9] S. C. Brenner, S. Gu, T. Gudi and L.-Y. Sung, A quadratic C 0 interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type. SIAM J. Numer. Anal. 50 (2012) 2088–2110. | MR | Zbl | DOI

[10] F. Bubba, C. Pouchol, N. Ferrand, G. Vidal, L. Almeida, B. Perthame and M. Sabbah, A chemotaxis-based explanation of spheroid formation in 3d cultures of breast cancer cells. J. Theor. Biol. 479 (2019) 73–80. | MR | DOI

[11] H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20 (2003) 341–366. | Zbl | DOI

[12] J. W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961) 795–801. | DOI

[13] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI

[14] C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. | MR | DOI

[15] C. Cancès, M. Ibrahim and M. Saad, Positive nonlinear CVFE scheme for degenerate anisotropic Keller-Segel system. SMAI J. Comput. Math. 3 (2017) 1–28. | MR | DOI

[16] J. A. Carrillo, S. Hittmeir and A. Jüngel, Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model. Math. Models Methods Appl. Sci. 22 (2012) 1250041. | MR | Zbl | DOI

[17] C. Chatelain, T. Balois, P. Ciarletta and M. Ben Amar, Emergence of microstructural patterns in skin cancer: A phase separation analysis in a binary mixture. New J. Phys. 13 (2011) 339–357. | DOI

[18] L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79 (2011) 561–596. | MR | Zbl | DOI

[19] M. Ebenbeck and H. Garcke, On a Cahn–Hilliard–Brinkman model for tumor growth and its singular limits. SIAM J. Math. Anal. 51 (2019) 1868–1912. | MR | DOI

[20] C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation. In: Mathematical Models for Phase Change Problems (Óbidos, 1988). Vol. 88 of International Series of Numerical Mathematics. Birkhäuser, Basel (1989) 35–73 | MR | Zbl | DOI

[21] C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404–423. | MR | Zbl | DOI

[22] C. M. Elliott and Z. Songmu, On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96 (1986) 339–357. | MR | Zbl | DOI

[23] C. M. Elliott, D. A. French and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54 (1989) 575–590. | MR | Zbl | DOI

[24] R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41–82. | MR | Zbl | DOI

[25] R. Eymard, R. Herbin and A. Michel, Mathematical study of a petroleum-engineering scheme. ESAIM: M2AN 37 (2003) 937–972. | MR | Numdam | Zbl | DOI

[26] D. J. Eyre, An unconditionally stable one-step scheme for gradient systems (1997).

[27] H. Fujii, Some remarks on finite element analysis of time dependent field problems. In: Theory and Practice in Finite Element Structural Analysis, edited by Y. Yamada and R. H. Gallager. University of Tokyo Press (1973) 91–106. | Zbl

[28] H. Garcke, K. F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26 (2016) 1095–1148. | MR | DOI

[29] H. Garcke, K. F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28 (2018) 525–577. | MR | DOI

[30] A. Miranville, The Cahn-Hilliard equation and some of its variants. AIMS Math. 2 (2017) 479–544. | DOI

[31] A. Novick-Cohen, The Cahn-Hilliard equation. In: Handbook of Differential Equations: Evolutionary Equations. Vol. IV of Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam (2008) 201–228. | MR | Zbl

[32] B. Perthame and A. Poulain, Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility. Eur. J. Appl. Math. 32 (2021) 89–112. | MR | DOI

[33] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1994). | MR | Zbl | DOI

[34] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1997). | MR | Zbl | DOI

[35] G. Tierra and F. Guillén-González, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22 (2015) 269–289. | MR | DOI

[36] J. M. Varah, A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11 (1975) 3–5. | MR | Zbl | DOI

[37] S. M. Wise, J. S. Lowengrub, H. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth – I: Model and numerical method. J. Theor. Biol. 253 (2008) 524–543. | MR | DOI

Cité par Sources :