Stabilized finite elements for Tresca friction problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1307-1326

We formulate and analyze a Nitsche-type algorithm for frictional contact problems. The method is derived from, and analyzed as, a stabilized finite element method and shown to be quasi-optimal, as well as suitable as an adaptive scheme through an a posteriori error analysis. The a posteriori error indicators are validated in a numerical experiment.

DOI : 10.1051/m2an/2022048
Classification : 65N30
Keywords: Finite elements, frictional contact, Nitsche’s method, $$ error analysis
@article{M2AN_2022__56_4_1307_0,
     author = {Gustafsson, Tom and Videman, Juha},
     title = {Stabilized finite elements for {Tresca} friction problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1307--1326},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022048},
     mrnumber = {4444529},
     zbl = {1497.65227},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022048/}
}
TY  - JOUR
AU  - Gustafsson, Tom
AU  - Videman, Juha
TI  - Stabilized finite elements for Tresca friction problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1307
EP  - 1326
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022048/
DO  - 10.1051/m2an/2022048
LA  - en
ID  - M2AN_2022__56_4_1307_0
ER  - 
%0 Journal Article
%A Gustafsson, Tom
%A Videman, Juha
%T Stabilized finite elements for Tresca friction problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1307-1326
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022048/
%R 10.1051/m2an/2022048
%G en
%F M2AN_2022__56_4_1307_0
Gustafsson, Tom; Videman, Juha. Stabilized finite elements for Tresca friction problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1307-1326. doi: 10.1051/m2an/2022048

[1] L. Baillet and T. Sassi, Mixed finite element methods for the Signorini problem with friction. Numer. Methods Part. Differ. Equ. 22 (2006) 1489–1508. | MR | Zbl | DOI

[2] F. Chouly, An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. App. 411 (2014) 329–339. | MR | Zbl | DOI

[3] F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin and Y. Renard, An overview of recent results on Nitsche’s method for contact problems. In: Geometrically Unfitted Finite Element Methods and Applications, edited by S. P. A. Bordas, E. N. Burman, M. G. Larson and M. A. Olshanskii. Vol. 121 of Lecture Notes in Computational Science and Engineering. Springer (2017). | MR | Zbl | DOI

[4] F. Chouly, M. Fabre, P. Hild, J. Pousin and Y. Renard, Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. 38 (2018) 921–954. | MR | Zbl | DOI

[5] F. Chouly, R. Mlika and Y. Renard, An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numer. Math. 139 (2018) 593–631. | MR | Zbl | DOI

[6] F. Chouly, A. Ern and N. Pignet, A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity. SIAM J. Sci. Comput. 42 (2020) A2300–A2324. | MR | Zbl | DOI

[7] P. Dörsek and J. M. Melenk, Adaptive h p -FEM for the contact problem with Tresca friction in linear elasticity: the primal-dual formulation and a posteriori error estimation. Appl. Numer. Math. 60 (2010) 689–704. | MR | Zbl | DOI

[8] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics. Springer, Berlin (1976). | MR | Zbl | DOI

[9] T. Gustafsson, Source code for the numerical experiment: kinnala/paper-fricnitsche. Preprint DOI: (2022). | DOI

[10] T. Gustafsson and G. D. Mcbain, scikit-fem: a Python package for finite element assembly. J. Open Source Softw. 5 (2020) 2369. | DOI

[11] T. Gustafsson, R. Stenberg and J. Videman, Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55 (2017) 2718–2744. | MR | Zbl | DOI

[12] T. Gustafsson, R. Stenberg and J. Videman, On Nitsche’s method for elastic contact problems. SIAM J. Sci. Comput. 42 (2020) B425–B446. | MR | Zbl | DOI

[13] J. Haslinger and I. Hlaváçek, Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. App. 86 (1982) 99–122. | MR | Zbl | DOI

[14] J. Haslinger and T. Sassi, Mixed finite element approximation of 3D contact problems with given friction: error analysis and numerical realization. ESAIM: Math. Modell. Numer. Anal. 38 (2004) 563–578. | MR | Zbl | Numdam | DOI

[15] J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics. In: Finite Element Methods (Part 2), Numerical Methods for Solids (Part 2). Vol. 4 of Handbook of Numerical Analysis. Elsevier (1996) 313–485. | MR | Zbl | DOI

[16] P. Hild and V. Lleras, Residual error estimators for Coulomb friction. SIAM J. Numer. Anal. 47 (2009) 3550–3583. | MR | Zbl | DOI

[17] P. Hild and Y. Renard, An error estimate for the Signorini problem with Coulomb friction approximated by finite elements. SIAM J. Numer. Anal. 45 (2007) 2012–2031. | MR | Zbl | DOI

[18] P. Hild and Y. Renard, A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115 (2010) 101–129. | MR | Zbl | DOI

[19] S. Hüeber, G. Stadler and B. I. Wohlmuth, A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comput. 30 (2008) 572–596. | MR | Zbl | DOI

[20] J. D. Hunter, Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9 (2007) 90–95. | DOI

[21] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988). | MR | Zbl | DOI

[22] P. Laborde and Y. Renard, Fixed point strategies for elastostatic frictional contact problems. Math. Methods Appl. Sci. 31 (2008) 415–441. | MR | Zbl | DOI

[23] T. A. Laursen, Computational Contact and Impact Mechanics, corr. 2nd printing. Springer, Heidelberg (2003). | MR | Zbl | DOI

[24] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013). | MR | Zbl | DOI

[25] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. Van Der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vander Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. Van Mulbregt and SciPy 1.0 Contributors, SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17 (2020) 261–272. | DOI

[26] B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20 (2011) 569–734. | MR | Zbl | DOI

[27] P. Wriggers, Computational Contact Mechanics, 2nd edition, Springer-Verlag, Berlin Heidelberg (2006). | DOI

Cité par Sources :