We formulate and analyze a Nitsche-type algorithm for frictional contact problems. The method is derived from, and analyzed as, a stabilized finite element method and shown to be quasi-optimal, as well as suitable as an adaptive scheme through an a posteriori error analysis. The a posteriori error indicators are validated in a numerical experiment.
Keywords: Finite elements, frictional contact, Nitsche’s method, $$ error analysis
@article{M2AN_2022__56_4_1307_0,
author = {Gustafsson, Tom and Videman, Juha},
title = {Stabilized finite elements for {Tresca} friction problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1307--1326},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {4},
doi = {10.1051/m2an/2022048},
mrnumber = {4444529},
zbl = {1497.65227},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022048/}
}
TY - JOUR AU - Gustafsson, Tom AU - Videman, Juha TI - Stabilized finite elements for Tresca friction problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 1307 EP - 1326 VL - 56 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022048/ DO - 10.1051/m2an/2022048 LA - en ID - M2AN_2022__56_4_1307_0 ER -
%0 Journal Article %A Gustafsson, Tom %A Videman, Juha %T Stabilized finite elements for Tresca friction problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 1307-1326 %V 56 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022048/ %R 10.1051/m2an/2022048 %G en %F M2AN_2022__56_4_1307_0
Gustafsson, Tom; Videman, Juha. Stabilized finite elements for Tresca friction problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1307-1326. doi: 10.1051/m2an/2022048
[1] and , Mixed finite element methods for the Signorini problem with friction. Numer. Methods Part. Differ. Equ. 22 (2006) 1489–1508. | MR | Zbl | DOI
[2] , An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. App. 411 (2014) 329–339. | MR | Zbl | DOI
[3] , , , , and , An overview of recent results on Nitsche’s method for contact problems. In: Geometrically Unfitted Finite Element Methods and Applications, edited by , , and . Vol. 121 of Lecture Notes in Computational Science and Engineering. Springer (2017). | MR | Zbl | DOI
[4] , , , and , Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method. IMA J. Numer. Anal. 38 (2018) 921–954. | MR | Zbl | DOI
[5] , and , An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numer. Math. 139 (2018) 593–631. | MR | Zbl | DOI
[6] , and , A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity. SIAM J. Sci. Comput. 42 (2020) A2300–A2324. | MR | Zbl | DOI
[7] and , Adaptive -FEM for the contact problem with Tresca friction in linear elasticity: the primal-dual formulation and a posteriori error estimation. Appl. Numer. Math. 60 (2010) 689–704. | MR | Zbl | DOI
[8] and , Inequalities in Mechanics and Physics. Springer, Berlin (1976). | MR | Zbl | DOI
[9] , Source code for the numerical experiment: kinnala/paper-fricnitsche. Preprint DOI: (2022). | DOI
[10] and , scikit-fem: a Python package for finite element assembly. J. Open Source Softw. 5 (2020) 2369. | DOI
[11] , and , Mixed and stabilized finite element methods for the obstacle problem. SIAM J. Numer. Anal. 55 (2017) 2718–2744. | MR | Zbl | DOI
[12] , and , On Nitsche’s method for elastic contact problems. SIAM J. Sci. Comput. 42 (2020) B425–B446. | MR | Zbl | DOI
[13] and , Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. App. 86 (1982) 99–122. | MR | Zbl | DOI
[14] and , Mixed finite element approximation of 3D contact problems with given friction: error analysis and numerical realization. ESAIM: Math. Modell. Numer. Anal. 38 (2004) 563–578. | MR | Zbl | Numdam | DOI
[15] , and , Numerical methods for unilateral problems in solid mechanics. In: Finite Element Methods (Part 2), Numerical Methods for Solids (Part 2). Vol. 4 of Handbook of Numerical Analysis. Elsevier (1996) 313–485. | MR | Zbl | DOI
[16] and , Residual error estimators for Coulomb friction. SIAM J. Numer. Anal. 47 (2009) 3550–3583. | MR | Zbl | DOI
[17] and , An error estimate for the Signorini problem with Coulomb friction approximated by finite elements. SIAM J. Numer. Anal. 45 (2007) 2012–2031. | MR | Zbl | DOI
[18] and , A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115 (2010) 101–129. | MR | Zbl | DOI
[19] , and , A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comput. 30 (2008) 572–596. | MR | Zbl | DOI
[20] , Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9 (2007) 90–95. | DOI
[21] and , Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988). | MR | Zbl | DOI
[22] and , Fixed point strategies for elastostatic frictional contact problems. Math. Methods Appl. Sci. 31 (2008) 415–441. | MR | Zbl | DOI
[23] , Computational Contact and Impact Mechanics, corr. 2nd printing. Springer, Heidelberg (2003). | MR | Zbl | DOI
[24] , A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013). | MR | Zbl | DOI
[25] , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and SciPy 1.0 Contributors, SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17 (2020) 261–272. | DOI
[26] , Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20 (2011) 569–734. | MR | Zbl | DOI
[27] , Computational Contact Mechanics, 2nd edition, Springer-Verlag, Berlin Heidelberg (2006). | DOI
Cité par Sources :





