Mean curvature motion of point cloud varifolds
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1773-1808

This paper investigates a discretization scheme for mean curvature motion on point cloud varifolds with particular emphasis on singular evolutions. To define the varifold a local covariance analysis is applied to compute an approximate tangent plane for the points in the cloud. The core ingredient of the mean curvature motion model is the regularization of the first variation of the varifold via convolution with kernels with small stencil. Consistency with the evolution velocity for a smooth surface is proven provided that a sufficiently small stencil and a regular sampling are considered. Furthermore, an implicit and a semi-implicit time discretization are derived. The implicit scheme comes with discrete barrier properties known for the smooth, continuous evolution, whereas the semi-implicit still ensures in all our numerical experiments very good approximation properties while being easy to implement. It is shown that the proposed method is robust with respect to noise and recovers the evolution of smooth curves as well as the formation of singularities such as triple points in 2D or minimal cones in 3D.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022047
Classification : 49Q20, 35K55, 53A70, 53E10
Keywords: Point cloud varifolds, Mean curvature motion, Regularization, Singular evolution, Time discretization
@article{M2AN_2022__56_5_1773_0,
     author = {Buet, Blanche and Rumpf, Martin},
     title = {Mean curvature motion of point cloud varifolds},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1773--1808},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/m2an/2022047},
     mrnumber = {4458833},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022047/}
}
TY  - JOUR
AU  - Buet, Blanche
AU  - Rumpf, Martin
TI  - Mean curvature motion of point cloud varifolds
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1773
EP  - 1808
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022047/
DO  - 10.1051/m2an/2022047
LA  - en
ID  - M2AN_2022__56_5_1773_0
ER  - 
%0 Journal Article
%A Buet, Blanche
%A Rumpf, Martin
%T Mean curvature motion of point cloud varifolds
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1773-1808
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022047/
%R 10.1051/m2an/2022047
%G en
%F M2AN_2022__56_5_1773_0
Buet, Blanche; Rumpf, Martin. Mean curvature motion of point cloud varifolds. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 5, pp. 1773-1808. doi: 10.1051/m2an/2022047

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford mathematical monographs, Clarendon Press, Oxford, New York (2000). | MR | Zbl | DOI

[2] W. K. Allard, On the first variation of a varifold. Ann. Math. (1972) 417–491. | MR | Zbl | DOI

[3] J. W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31 (2008) 225–253. | MR | Zbl | DOI

[4] J. L. Blanco and P. K. Rai, Nanoflann: A C++ header-only library for nearest neighbor search wih KD-trees (2014).

[5] V. I. Bogachev, Measure Theory II. Springer Berlin Heidelberg (2007). | MR | Zbl | DOI

[6] K. A. Brakke, The Motion of a Surface by its Mean Curvature. Mathematical notes (20), Princeton University Press (1978). | MR | Zbl

[7] K. Brakke, Minimal cones on hypercubes. J. Geom. Anal. 1 (1991) 329–338. | MR | Zbl | DOI

[8] K. Brakke, The surface evolver. Exp. Math. 1 (1992) 141–165. | MR | Zbl | DOI

[9] E. Bretin and V. Perrier, Phase field method for mean curvature flow with boundary constraints. ESAIM: M2AN 46 (2012) 1509–1526. | MR | Numdam | Zbl | DOI

[10] B. Buet, G. P. Leonardi and S. Masnou, A Varifold Approach to Surface Approximation. Arch. Ration. Mech. Anal. (2017). | MR

[11] N. Charon and A. Trouvé, The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6 (2013) 2547–2580. | MR | Zbl | DOI

[12] N. Charon, B. Charlier, J. Glaunès, P. Gori and P. Roussillon, Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles, In Riemannian Geometric Statistics in Medical Image Analysis, edited by X. Pennec, S. Sommer and T. Fletcher. Academic Press (2020) 441–477. | MR | DOI

[13] F. Chazal, D. Cohen-Steiner, A. Lieutier and B. Thibert, Stability of curvature measures. Eur. Symp. Geom. Process. 28 (2009) 01.

[14] Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33 (1991) 749–786. | MR | Zbl

[15] U. Clarenz, M. Rumpf and A. Telea, Finite elements on point based surfaces. In Eurographics Symposium of Point Based Graphics (2004).

[16] D. Cohen-Steiner and J.-M. Morvan, Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 74 (2006) 363–394. | MR | Zbl | DOI

[17] K. Deckelnick, G. Dziuk and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. | MR | Zbl | DOI

[18] M. Desbrun, M. Meyer, P. Schröder and A. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. of SIGGRAPH 99, Annual Conference Series (1999) 317–324.

[19] G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58 (1991) 603–612. | MR | Zbl | DOI

[20] K. Ecker, Regularity Theory for Mean Curvature Flow, Vol. 57, Birkhäuser Basel (2004) 01. | MR | Zbl

[21] L. C. Evans and J. Spruck, Motion of level sets by mean curvature i. J. Differ. Geom. 33 (1991) 635–681. | MR | Zbl | DOI

[22] L. C. Evans and J. Spruck, Motion of level sets by mean curvature iv. J. Geom. Anal 5 (1995) 77–114. | MR | Zbl | DOI

[23] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (2006) 1097–1123. | MR | Zbl | DOI

[24] X. Feng and A. Prohl, Numerical analysis of the allen-cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. | MR | Zbl | DOI

[25] T. Ilmanen, Convergence of the allen-cahn equation to brakke’s motion by mean curvature. J. Differ. Geom. 38 (1993) 417–461. | MR | Zbl | DOI

[26] T. Ilmanen, A. Neves and F. Schulze, On short time existence for the planar network flow. J. Differ. Geom. 111 (2019) 39–89. | MR | DOI

[27] I. Kaltenmark, B. Charlier and N. Charon, A general framework for curve and surface comparison and registration with oriented varifolds. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 4580–4589. | DOI

[28] L. Kim and Y. Tonegawa, On the mean curvature flow of grain boundaries. Ann. Inst. Fourier 67 (2017) 43–142. | MR | Numdam | DOI

[29] C. Mantegazza, M. Novaga and V. M. Tortorelli, Motion by curvature of planar networks. Ann. Sc. norm. super. Pisa - Cl. sci. 3 (2004) 235–324. | MR | Numdam | Zbl

[30] B. Merriman, J. K. Bence and S. J. Osher, Motion of multiple junctions: A level set approach. J. Comput. Phys. 112 (1994) 334–363. | MR | Zbl | DOI

[31] Q. Mérigot, M. Ovsjanikov and L. J. Guibas, Voronoi-Based Curvature and Feature Estimation from Point Clouds. IEEE Trans. Vis. Comput. Graph. 17 (2011) 743–756. | DOI

[32] U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates. Exp. Math. 2 (1993) 15–36. | MR | Zbl | DOI

[33] H. Schumacher and M. Wardetzky, Variational convergence of discrete minimal surfaces. Numer. Math. 141 (2019) 173–213. | MR | DOI

[34] N. Sharp and K. Crane, A Laplacian for Nonmanifold Triangle Meshes. Comput. Graph. Forum 39 (2020). | DOI

[35] L. Simon, Lectures on geometric measure theory, In Vol. 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University Centre for Mathematical Analysis, Canberra (1983). | MR | Zbl

[36] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19 (2003) 439–456. | MR | Zbl | DOI

[37] J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103 (1976) 489–539. | MR | Zbl | DOI

[38] P. Yang and X. Qian, Direct computing of surface curvatures for point-set surfaces. 01 (2007) 29–36.

[39] Y.-L. Yang, Y.-K. Lai, S.-M. Hu and H. Pottmann, Robust Principal Curvatures on Multiple Scales, In Symposium on Geometry Processing, edited by A. Sheffer and K. Polthier, The Eurographics Association (2006).

Cité par Sources :