Positivity-preserving methods for ordinary differential equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1843-1870

Many important applications are modelled by differential equations with positive solutions. However, it remains an outstanding open problem to develop numerical methods that are both (i) of a high order of accuracy and (ii) capable of preserving positivity. It is known that the two main families of numerical methods, Runge–Kutta methods and multistep methods, face an order barrier. If they preserve positivity, then they are constrained to low accuracy: they cannot be better than first order. We propose novel methods that overcome this barrier: second order methods that preserve positivity unconditionally and a third order method that preserves positivity under very mild conditions. Our methods apply to a large class of differential equations that have a special graph Laplacian structure, which we elucidate. The equations need be neither linear nor autonomous and the graph Laplacian need not be symmetric. This algebraic structure arises naturally in many important applications where positivity is required. We showcase our new methods on applications where standard high order methods fail to preserve positivity, including infectious diseases, Markov processes, master equations and chemical reactions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022042
Classification : 65L05, 65P99, 65L04
Keywords: Positivity-preserving methods, graph Laplacian matrices, exponential integrators, Magnus integrators
@article{M2AN_2022__56_6_1843_0,
     author = {Blanes, Sergio and Iserles, Arieh and Macnamara, Shev},
     title = {Positivity-preserving methods for ordinary differential equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1843--1870},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022042},
     mrnumber = {4467101},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022042/}
}
TY  - JOUR
AU  - Blanes, Sergio
AU  - Iserles, Arieh
AU  - Macnamara, Shev
TI  - Positivity-preserving methods for ordinary differential equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1843
EP  - 1870
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022042/
DO  - 10.1051/m2an/2022042
LA  - en
ID  - M2AN_2022__56_6_1843_0
ER  - 
%0 Journal Article
%A Blanes, Sergio
%A Iserles, Arieh
%A Macnamara, Shev
%T Positivity-preserving methods for ordinary differential equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1843-1870
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022042/
%R 10.1051/m2an/2022042
%G en
%F M2AN_2022__56_6_1843_0
Blanes, Sergio; Iserles, Arieh; Macnamara, Shev. Positivity-preserving methods for ordinary differential equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 1843-1870. doi: 10.1051/m2an/2022042

[1] A. Alvermann and H. Fehske, High-order commutator-free exponential time-propagation of driven quantum systems. J. Comput. Phys. 230 (2011) 5930–5956. | MR | Zbl | DOI

[2] A. I. Ávila, S. Kopecz and A. Meister, A comprehensive theory on generalized BBKS schemes. Appl. Numer. Math. 157 (2020) 19–37. | MR | DOI

[3] M. Beck and M. J. Gander, On the positivity of Poisson integrators for the Lotka-Volterra equations. BIT Numer. Math. 55 (2015) 319–340. | MR | DOI

[4] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1979). | MR | Zbl

[5] E. Bertolazzi, Positive and conservative schemes for mass action kinetics. Comput. Math. App. 32 (1996) 29–43. | MR | Zbl

[6] S. Blanes, On the construction of symmetric second order methods for ODEs. Appl. Math. Lett. 98 (2019) 41–48. | MR | DOI

[7] S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL (2016). | MR

[8] S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus expansion and some of its applications. Phys. Rep. 470 (2009) 151–238. | MR | DOI

[9] S. Blanes, F. Casas and M. Thalhammer, High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Comput. Phys. Commun. 220 (2017) 243–262. | MR | DOI

[10] C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. RAIRO: Anal. Numér. 12 (1978) 237–245. | MR | Zbl | Numdam

[11] N. Broekhuizen, G. J. Rickard, J. Bruggeman and A. Meister, An improved and generalized second order, unconditionally positive, mass conserving integration scheme for biochemical systems. Appl. Numer. Math. 58 (2008) 319–340. | MR | Zbl | DOI

[12] J. Bruggeman, H. Burchard, B. W. Kooi and B. Sommeijer, A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems. Appl. Numer. Math. 57 (2007) 36–58. | MR | Zbl | DOI

[13] H. Burchard, E. Deleersnijder and A. Meister, Application of modified Patankar schemes to stiff biogeochemical models for the water column. Ocean Dyn. 55 (2005) 326–337. | DOI

[14] H. Burchard, E. Deleersnijder and A. Meister, A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl. Numer. Math. 47 (2003) 1–30. | MR | Zbl | DOI

[15] G. Colonna, On the relevance of superelastic collisions in argon and nitrogen discharges. Plasma Sources Sci. Technol. 29 (2020) 065008. | DOI

[16] F. Diele and C. Marangi, Geometric numerical integration in ecological modelling. Mathematics 8 (2020) 25. | DOI

[17] B. A. Earnshaw and J. P. Keener, Global asymptotic stability of solutions of nonautonomous master equations. SIAM J. Appl. Dyn. Syst. 9 (2010) 220–237. | MR | Zbl | DOI

[18] B. A. Earnshaw and J. P. Keener, Invariant manifolds of binomial-like nonautonomous master equations. SIAM J. Appl. Dyn. Syst. 9 (2010) 568–588. | MR | Zbl | DOI

[19] L. Edsberg, Integration package for chemical kinetics. In: Stiff Differential Systems (Proc. Internat. Sympos., Wildbad, 1973), edited by R. A. Willoughby. Springer, Boston, MA (1974) 81–95. | DOI

[20] L. Formaggia and A. Scotti, Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49 (2011) 1267–1288. | MR | Zbl | DOI

[21] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nat. Med. 26 (2020) 855–860. | DOI

[22] J. Gunawardena, A linear framework for time-scale separation in nonlinear biochemical systems. PloS One 7 (2012) e36321. | DOI

[23] O. Hadač, F. Muzika, V. Nevoral, M. Přibyl and I. Schreiber, Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade. Plos One 12 (2017) e0178457. | DOI

[24] E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd revised edition, paperback. Vol. 14 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2010). | MR | Zbl

[25] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Reprint of the second (2006) edition. Vol. 31 of Springer Series in Computational Mathematics. Springer, Heidelberg (2010). | MR | Zbl

[26] E. Hansen, F. Kramer and A. Ostermann, A second-order positivity preserving scheme for semilinear parabolic problems. Appl. Numer. Math. 62 (2012) 1428–1435. | MR | Zbl | DOI

[27] A. Hellander, J. Klosa, P. Lötstedt and S. Macnamara, Robustness analysis of spatiotemporal models in the presence of extrinsic fluctuations. SIAM J. Appl. Math. 77 (2017) 1157–1183. | MR | DOI

[28] M. Hochbruck, A. Ostermann and J. Schweitzer, Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47 (2008/2009) 786–803. | MR | Zbl | DOI

[29] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2009). | MR | Zbl

[30] A. Iserles and S. Macnamara, Applications of Magnus expansions and pseudospectra to Markov processes. Eur. J. Appl. Maths 30 (2019) 400–425. | MR | DOI

[31] A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999) 983–1019. | MR | Zbl | DOI

[32] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-Group Methods. In: Acta numerica, 2000. Vol. 9 of Acta Numer. Cambridge Univ. Press, Cambridge (2000) 215–365. | MR | Zbl

[33] W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. London 115 (1927) 700–721. | JFM

[34] S. Kopecz and A. Meister, On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123 (2018) 159–179. | MR | DOI

[35] S. Kopecz and A. Meister, Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production-destruction systems. BIT Numer. Math. 58 (2018) 691–728. | MR | DOI

[36] S. C. Leite and R. J. Williams, A constrained Langevin approximation for chemical reaction networks. Ann. Appl. Prob. 29 (2019) 1541–1608. | MR | DOI

[37] S. Macnamara, Cauchy integrals for computational solutions of master equations. ANZIAM J. 56 (2015) 32–51. | MR | DOI

[38] S. Macnamara, A. M. Bersani, K. Burrage and R. B. Sidje, Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys. 129 (2008) 095105. | DOI

[39] S. Macnamara, K. Burrage and R. B. Sidje, Multiscale modeling of chemical kinetics via the master equation. Multiscale Modeling Simul. 6 (2008) 1146–1168. | MR | Zbl | DOI

[40] S. Macnamara, B. Henry and W. Mclean, Fractional Euler limits and their applications. SIAM J. Appl. Math. 77 (2017) 447–469. | MR | DOI

[41] S. Macnamara, S. Blanes and A. Iserles, Simulation of bimolecular reactions: numerical challenges with the graph Laplacian. ANZIAM J. 61 (2020) C59–C74. | DOI

[42] W. Magnus, On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7 (1954) 649–673. | MR | Zbl | DOI

[43] P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney and S. S. Lee, Turing’s model for biological pattern formation and the robustness problem. J. R. Soc. Interface Focus 2 (2012) 487–496. | DOI

[44] A. Martiradonna, G. Colonna and F. Diele, GeCo: Geometric Conservative nonstandard schemes for biochemical systems. Appl. Numer. Math. 155 (2020s) 38–57. | MR | DOI

[45] I. Mirzaev and J. Gunawardena, Laplacian dynamics on general graphs. Bull. Math. Biol. 75 (2013) 2118–2149. | MR | Zbl | DOI

[46] P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes. Appl. Numer. Math. 153 (2020) 15–34. | MR | DOI

[47] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences. Hemisphere Pub. Corp., New York (1980). | Zbl

[48] L. Qiao, R. B. Nachbar, I. G. Kevrekidis and S. Y. Shvartsman, Bistability and oscillations in the Huang-Ferrell model of MAPK signaling. PLoS Comput. Biol. 3 (2007) e184. | MR | DOI

[49] A. Sandu, Positive numerical integration methods for chemical kinetic systems. J. Comput. Phys. 170 (2001) 589–602. | MR | Zbl | DOI

[50] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems. Vol. 7 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994). | MR | Zbl | DOI

[51] M. J. Shon and A. E. Cohen, Mass action at the single-molecule level. J. Am. Chem. Soc. 134 (2012) 14618–14623. | DOI

[52] R. L. Speth, W. H. Green, S. Macnamara and G. Strang, Balanced splitting and rebalanced splitting. SIAM J. Numer. Anal. 51 (2013) 3084–3105. | MR | Zbl | DOI

[53] C. Timm, Random transition-rate matrices for the master equation. Phys. Rev. E 80 (2009) 021140. | DOI

Cité par Sources :