A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1255-1305

Inspired by the lubrication framework, in this paper we consider a micropolar fluid flow through a rough thin domain, whose thickness is considered as the small parameter ε while the roughness at the bottom is defined by a periodical function with period of order $$ and amplitude ε$$, with δ> ℓ >1. Assuming nonzero boundary conditions on the rough bottom and by means of a version of the unfolding method, we identify a critical case δ=3 2𝓁-1 2 and obtain three macroscopic models coupling the effects of the rough bottom and the nonzero boundary conditions. In every case we provide the corresponding micropolar Reynolds equation. We apply these results to carry out a numerical study of a model of squeeze-film bearing lubricated with a micropolar fluid. Our simulations reveal the impact of the roughness coupled with the nonzero boundary conditions on the performance of the bearing, and suggest that the introduction of a rough geometry may contribute to enhancing the mechanical properties of the device.

DOI : 10.1051/m2an/2022039
Classification : 35B27, 76D08
Keywords: Thin-film flow, micropolar fluid, rough boundary, homogenization, unfolding method
@article{M2AN_2022__56_4_1255_0,
     author = {Bonnivard, Matthieu and Pa\v{z}anin, Igor and Su\'arez-Grau, Francisco J.},
     title = {A generalized {Reynolds} equation for micropolar flows past a ribbed surface with nonzero boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1255--1305},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022039},
     mrnumber = {4444534},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022039/}
}
TY  - JOUR
AU  - Bonnivard, Matthieu
AU  - Pažanin, Igor
AU  - Suárez-Grau, Francisco J.
TI  - A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1255
EP  - 1305
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022039/
DO  - 10.1051/m2an/2022039
LA  - en
ID  - M2AN_2022__56_4_1255_0
ER  - 
%0 Journal Article
%A Bonnivard, Matthieu
%A Pažanin, Igor
%A Suárez-Grau, Francisco J.
%T A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1255-1305
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022039/
%R 10.1051/m2an/2022039
%G en
%F M2AN_2022__56_4_1255_0
Bonnivard, Matthieu; Pažanin, Igor; Suárez-Grau, Francisco J. A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1255-1305. doi: 10.1051/m2an/2022039

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | MR | Zbl | DOI

[2] T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990) 823–836. Sér. I 332 (2001) 223–228. | MR | Zbl | DOI

[3] J. M. Arrieta and M. Villanueva-Pesqueira, Unfolding operator method for thin domains with a locally periodic highly oscillatory boundary. SIAM J. Math. Anal. 48 (2016) 1634–1671. | MR | DOI

[4] S. Bair and W.O. Winer, Shear strength measurements of lubricants at high pressure. ASME Ser. F. J. Lubr. Technol. 101 (1979) 251–257. | DOI

[5] G. Bayada and M. Chambat, The transition between the Stokes equations and the Reynolds equation: a mathematical proof. Appl. Math. Opt. 14 (1986) 73–93. | MR | Zbl | DOI

[6] G. Bayada and M. Chambat, New models in the theory of the hydrodynamic lubrication of rough surfaces. J. Tribol. 110 (1988) 402–407. | DOI

[7] G. Bayada and G. Łukaszewicz, On micropolar fluids in the theory of lubrication. Rigorous derivation of an analogue of the Reynolds equation. Int. J. Eng. Sci. 34 (1996) 1477–1490. | MR | Zbl | DOI

[8] G. Bayada, M. Chambat and S. R. Gamouana, About thin film micropolar asymptotic equations. Quart. Appl. Math. 59 (2001) 413–439. | MR | Zbl | DOI

[9] G. Bayada, N. Benhaboucha and M. Chambat, New models in micropolar fluid and their application to lubrication. Math. Mod. Meth. Appl. Sci. 15 (2005) 343–374. | MR | Zbl | DOI

[10] G. Bayada, N. Benhaboucha and M. Chambat, Wall slip induced by a micropolar fluid. J. Eng. Math. 60 (2008) 89–100. | MR | Zbl

[11] M. Beneš, I. Pažanin and F. J. Suárez-Grau, Heat flow through a thin cooled pipe filled with a micropolar fluid. J. Theor. Appl. Mech. 53 (2015) 569–579.

[12] N. Benhaboucha, M. Chambat and I. Ciuperca, Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary. Q. Appl. Math. 63 (2005) 369–400. | MR | Zbl

[13] N. M. Bessonov, Boundary Viscosity Conception in Hydrodynamical Theory of Lubrication. Russian Academy of Sicence, Institute of the Problems of Mechanical Engineering, St-Petersbourg, preprint Vol. 81 (1993) 105–108.

[14] N. M. Bessonov, A new generalization of the Reynolds equation for a micropolar fluid and its application to bearing theory. Tribol. Int. 27 (1994) 105–108.

[15] E. Bonaccurso, H. J. Butt and V. S. Craig, Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phys. Re. Lett. 90 (2003) 144–501.

[16] M. Bonnivard and F. J. Suárez-Grau, Homogenization of a large eddy simulation model for turbulent fluid motion near a rough wall. J. Math. Fluid Mech. 20 (2018) 1771–1813. | MR

[17] M. Bonnivard, F. J. Suárez-Grau and G. Tierra, On the influence of wavy riblets on the slip behaviour of viscous fluids. Z. Angew. Math. Phys. 67 (2016) 1–23. | MR

[18] M. Bonnivard, I. Pažanin and F. J. Suárez-Grau, Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid. Eur. J. Mech. B/Fluids 72 (2018) 501–518. | MR

[19] M. Boukrouche and L. Paoli, Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary. SIAM J. Math. Anal. 44 (2012) 1211–1256. | MR | Zbl

[20] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Springer, (2013). | MR | Zbl

[21] D. Bresch, C. Choquet, L. Chupin, T. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation. SIAM Multiscale Model. Simul. 8 (2010) 997–1017. | MR | Zbl

[22] D. Bucur, E. Feireisl and S. Nečasová, On the asymptotic limit of flows past a ribbed boundary. J. Math. Fluid Mech. 10 (2008) 554–568. | MR | Zbl

[23] J. Casado-Díaz, M. Luna-Laynez and F. J. Suárez-Grau, A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary. C. R. Math. 348 (2010) 967–971. | MR | Zbl

[24] J. Casado-Díaz, M. Luna-Laynez and F. J. Suárez-Grau, Asymptotic behavior of the Navier–Stokes system in a thin domain with Navier condition on a slightly rough boundary. SIAM J. Math. Anal. 45 (2013) 1641–1674. | MR | Zbl

[25] L. Chupin and S. Martin, Rigorous derivation of the thin film approximation with roughness-induced correctors. SIAM J. Math. Anal. 44 (2012) 3041–3070. | MR | Zbl

[26] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Acad. Sci. Paris Sér. I 335 (2002) 99–104. | MR | Zbl

[27] D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Portugaliae Math. 63 (2006) 467–496. | MR | Zbl

[28] V. S. J. Craig, C. Neto and D. R. M. Williams, Shear-dependent boundary slip in a aqueous Newtonian liquid. Phys. Rev. Lett. 87 (2001) 054504.

[29] D. Dupuy, G. Panasenko and R. Stavre, Asymptotic methods for micropolar fluids in a tube structure. Math. Mod. Meth. Appl. Sci. 14 (2004) 735–758. | MR | Zbl

[30] D. Dupuy, G. Panasenko and R. Stavre, Asymptotic solution for a micropolar flow in a curvilinear channel. Z. Angew. Math. Mech. 88 (2008) 793–807. | MR | Zbl

[31] A. C. Eringen, Simple microfluids. Int. J. Eng. Sci. 2 (1964) 205–217. | MR | Zbl

[32] A. C. Eringen, Theory of micropolar fluids. J. Math. Mech. 16 (1966) 1–16. | MR

[33] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equation. Springer-Verlag (1979). | Zbl

[34] S. G. Hatzikiriakos and J. M. Delay, Wall slip of molten high density polyethylene I – Sliding plate rheometer studies. J. Rheol. 35 (1991) 497–523.

[35] F. Hecht, New Development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl

[36] H. Hervet, R. Pit and L. Léger, Friction and slip of a simple liquid at a solid surface. Tribol. Lett. 7 (1999) 147–152.

[37] B. O. Jacobson, At the boundary between lubrication and wear. In: First World Tribology Conference, edited by I. M. Hutchings. Mech. Eng. Pub. London (1997) 291–298.

[38] B. O. Jacobson and B. J. Hamrock, Non-Newtonian fluid model incorporated into elastohydrodynamic lubrication of rectangular contacts. ASME J. Lubr. Technol. 106 (1984) 275–282.

[39] G. J. Jonhnston, R. Wayte and H. A. Spikes, The measurement and study of very thin lubricant films in concentrated contacts. Tribol. Trans. 34 (1991) 187–194.

[40] N. Kaneta, Observation of wall slip in elastohydrodynamic lubrication. ASME J. Tribol. 106 (1990) 275–282.

[41] L. Léger, H. Hervet and R. Pit, Friction and flow with slip at fluid-solid interfaceds. In: Interfacial Properties on the Submicrometer Scale. ACS Symposium Series. Vol. 781, ACS, Washington, DC (2001) 154–167.

[42] J.-L. Ligier, Lubrification des paliers moteurs. Technip (1997).

[43] G. Łukaszewicz, Micropolar Fluids: Theory and Applications. Birkhäuser, Boston (1999). | MR | Zbl

[44] J. B. Luo, P. Huang and S. Z. Wen, Thin film lubrication part I: Study on the transition between EHL and thin film lubrication using relative optical interference intensity technique. Wear 194 (1996) 107–115.

[45] J. B. Luo, P. Huang, S. Z. Wen and L. Lawrence, Characteristics of fluid lubricant films at nano-scale. J. Tribol. 121 (1999) 872–878.

[46] E. Marušić-Paloka, I. Pažanin and S. Marušić, Second order model in fluid film lubrication. C. R. Mecanique 340 (2012) 596–601.

[47] E. Marušić-Paloka, I. Pažanin and S. Marušić, An effective model for the lubrication with micropolar fluid. Mech. Res. Commun. 52 (2013) 69–73.

[48] Y. G. Meng and J. Zheng, A rheological model for lithinium lubricating grease. Tribol. Int. 31 (1999) 619–682.

[49] N. P. Migun, On hydrodynamic boundary conditions for microstructural fluids. Rheol. Acta 23 (1984) 575–581. | Zbl

[50] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | MR | Zbl

[51] I. Pažanin, Asymptotic behavior of micropolar fluid flow through a curved pipe. Acta Appl. Math. 116 (2011) 1–25. | MR | Zbl

[52] I. Pažanin, On the micropolar flow in a circular pipe: the effects of the viscosity coefficients. Theor. Appl. Mech. Lett. 1 (2011) 062004.

[53] I. Pažanin, Modeling of solute dispersion in a circular pipe filled with micropolar fluid. Math. Comput. Model. 57 (2012) 2366–2373. | MR | Zbl

[54] I. Pažanin, Asymptotic analysis of the lubrication problem with nonstandard boundary conditions for microrotation, to appear in FILOMAT (2016). | MR | Zbl

[55] I. Pažanin and F. J. Suárez-Grau, Effects of rough boundary on the heat transfer in a thin-film flow. C. R. Mécanique 341 (2013) 646–652.

[56] I. Pažanin and F. J. Suárez-Grau, Analysis of the thin film flow in a rough thin domain filled with micropolar fluid. Comput. Math. Appl. 68 (2014) 1915–1932. | MR | Zbl

[57] I. Pažanin and F. J. Suárez-Grau, Homogenization of the Darcy–Lapwood–Brinkman flow in a thin domain with highly oscillating boundaries. Bull. Malays. Math. Sci. Soc. 42 (2019) 3073–3109. | MR | Zbl

[58] J. Prakash and P. Sinha, Lubrication theory for micropolar fluids and its application to a journal bearing. Int. J. Eng. Sci. 13 (1975) 217–232. | Zbl

[59] P. P. Prokhorenko, N. P. Migun and S. V. Grebenshchicov, Experimental studies of polar indicator liquids used in capillary penetrant testing. Int. J. Eng. Sci. 25 (1947) 482–489.

[60] O. Reynolds, On the theory of lubrication and its applications to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. London 177 (1886) 157–234. | JFM

[61] P. Sinha and C. Singh, Micropolar squeeze films between rough rectangular plates. Appl. Sci. Res. 39 (1982) 167–179. | Zbl

[62] P. Sinha and C. Singh, The three-dimensional Reynolds equation for micropolar-fluid-lubricated bearings. Wear 76 (1982) 199–209.

[63] H. A. Spikes, The hanlf-wetted bearing. Part 1: extended Reynolds equation. J. Eng. Tribol. 217 (2003) 1–14.

[64] F. J. Suárez-Grau, Effective boundary condition for a quasi-newtonian fluid at a slightly rough boundary starting from a Navier condition. ZAMM – J. Appl. Math. Mech. 95 (2015) 527–548. | MR | Zbl

[65] F. J. Suárez-Grau, Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary. Nonlinear Anal. 117 (2015) 99–123. | MR | Zbl

[66] F. J. Suárez-Grau, Analysis of the roughness regimes for micropolar fluids via homogenization. Bull. Malays. Math. Sci. Soc. 44 (2021) 1613–1652. | MR | Zbl

[67] A. Z. Szeri, Fluid Film Lubrication: Theory and Design. Cambridge University Press (1998). | Zbl

[68] J. Wilkening, Practical error estimates for Reynolds’ lubrication approximation and its higher order corrections. SIAM J. Math. Anal. 41 (2009) 588–630. | MR | Zbl

[69] W. D. Wilson and X. B. Huang, Viscoplastic behavior of silicone oil in a metalforming inlet zone. ASME. J. Tribol. 111 (1989) 585–590.

Cité par Sources :