An ultraweak space-time variational formulation for the wave equation: Analysis and efficient numerical solution
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1173-1198

We introduce an ultraweak space-time variational formulation for the wave equation, prove its well-posedness (even in the case of minimal regularity) and optimal inf-sup stability. Then, we introduce a tensor product-style space-time Petrov–Galerkin discretization with optimal discrete inf-sup stability, obtained by a non-standard definition of the trial space. As a consequence, the numerical approximation error is equal to the residual, which is particularly useful for a posteriori error estimation. For the arising discrete linear systems in space and time, we introduce efficient numerical solvers that appropriately exploit the equation structure, either at the preconditioning level or in the approximation phase by using a tailored Galerkin projection. This Galerkin method shows competitive behavior concerning wall-clock time, accuracy and memory as compared with a standard time-stepping method in particular in low regularity cases. Numerical experiments with a 3D (in space) wave equation illustrate our findings.

DOI : 10.1051/m2an/2022035
Classification : 35L15, 65M15, 65M60
Keywords: Wave equation, ultraweak formulation, tensorproduct, numerical solvers
@article{M2AN_2022__56_4_1173_0,
     author = {Henning, Julian and Palitta, Davide and Simoncini, Valeria and Urban, Karsten},
     title = {An ultraweak space-time variational formulation for the wave equation: {Analysis} and efficient numerical solution},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1173--1198},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/m2an/2022035},
     mrnumber = {4444531},
     zbl = {1497.35312},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022035/}
}
TY  - JOUR
AU  - Henning, Julian
AU  - Palitta, Davide
AU  - Simoncini, Valeria
AU  - Urban, Karsten
TI  - An ultraweak space-time variational formulation for the wave equation: Analysis and efficient numerical solution
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 1173
EP  - 1198
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022035/
DO  - 10.1051/m2an/2022035
LA  - en
ID  - M2AN_2022__56_4_1173_0
ER  - 
%0 Journal Article
%A Henning, Julian
%A Palitta, Davide
%A Simoncini, Valeria
%A Urban, Karsten
%T An ultraweak space-time variational formulation for the wave equation: Analysis and efficient numerical solution
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 1173-1198
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022035/
%R 10.1051/m2an/2022035
%G en
%F M2AN_2022__56_4_1173_0
Henning, Julian; Palitta, Davide; Simoncini, Valeria; Urban, Karsten. An ultraweak space-time variational formulation for the wave equation: Analysis and efficient numerical solution. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 4, pp. 1173-1198. doi: 10.1051/m2an/2022035

[1] R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260. | MR | Zbl

[2] T. Apel, S. Nicaise and J. Pfefferer, Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains. Numer. Meth. Part. Diff. Equ. 32 (2016) 1433–1454. | MR | Zbl

[3] W. Arendt and K. Urban, Partial Differential Equations: An Analytic and Numerical Approach. Springer (2022) to appear. Translated from the German by J.B. Kennedy. | MR

[4] I. Babuška, J. Osborn and J. Pitkäranta, Analysis of mixed methods using mesh dependent norms. Math. Comput. 35 (1980) 1039–1062. | MR | Zbl

[5] L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation. Comput. Math. Appl. 27 (1994) 91–102. | MR | Zbl

[6] L. Bales and I. Lasiecka, Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous L 2 Dirichlet boundary data. Math. Comput. 64 (1995) 89–115. | MR | Zbl

[7] R. H. Bartels and G. W. Stewart, Algorithm 432: solution of the matrix equation A X + X B = C . Comm. ACM 15 (1972) 820–826. | Zbl

[8] M. Berggren, Approximations of very weak solutions to boundary-value problems. SIAM J. Numer. Anal. 42 (2004) 860–877. | MR | Zbl

[9] J. Brunken, K. Smetana and K. Urban, (Parametrized) First order transport equations: realization of optimally stable Petrov-Galerkin methods. SIAM J. Sci. Comput. 41 (2019) A592–A621. | MR | Zbl

[10] T. Bui-Thanh, L. Demkowicz and O. Ghattas, Constructively well-posed approximation methods with unity inf-sup and continuity constants for partial differential equations. Math. Comput. 82 (2013) 1923–1952. | MR | Zbl

[11] W. Dahmen, C. Huang, C. Schwab and G. Welper, Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420–2445. | MR | Zbl

[12] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions. Numer. Meth. Part. Diff. Equ. 27 (2011) 70–105. | MR | Zbl

[13] L. Demkowicz, J. Gopalakrishnan, S. Nagaraj and P. Sepúlveda, A spacetime DPG method for the Schrödinger equation. SIAM J. Numer. Anal. 55 (2017) 1740–1759. | MR | Zbl

[14] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60 (2011) 546–560. | MR | Zbl

[15] T. Ellis, J. Chan and L. Demkowicz, Robust DPG methods for transient convection-diffusion. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Vol. 114. Springer (2016) 179–203. | MR | Zbl

[16] J. Ernesti and C. Wieners, Space-time discontinuous Petrov-Galerkin methods for linear wave equations in heterogeneous media. Comput. Methods Appl. Math. 19 (2019) 465–481. | MR | Zbl

[17] G. Golub and C. F. Van Loan, Matrix Computations, 4th edition. The Johns Hopkins University Press (2013). | MR | Zbl

[18] B. Haasdonk, Reduced Basis Methods for Parametrized PDEs – a tutorial. In: Model Reduction and Approximation edited by P. Benner, A. Cohen, M. Ohlberger and K. Willcox. Chapter 2. SIAM (2017) 65–136. | MR

[19] J. Henning, D. Palitta, V. Simoncini and K. Urban, Matrix oriented reduction of space-time Petrov–Galerkin variational problems. In: Numerical Mathematics and Advanced Applications ENUMATH 2019, edited by F. J. Vermolen and C. Vuik. Vol. 139 of Lect. Notes Comput. Sci. Eng. Springer (2021) 1049–1057. | MR | Zbl

[20] J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer (2016). | MR

[21] B. Keith, A priori error analysis of high-order LL* (FOSLL*) finite element methods. Comput. Math. Appl. 103 (2021) 12–18. | MR | Zbl

[22] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM. J. Matrix Anal. Appl. 32 (2011) 1288–1316. | MR | Zbl

[23] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I Springer (1972). Translated from the French by P. Kenneth. | MR | Zbl

[24] S. May, R. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51 (2013) 2585–2611. | MR | Zbl

[25] C. Mollet, Parabolic PDEs in space-time formulations: stability for Petrov–Galerkin discretizations with B-splines and existence of moments for problems with random coefficients. Ph.D. thesis, Universität zu Köln (2016).

[26] R. H. Nochetto, K. G. Siebert and A. Veeser, Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, edited by R. A. Devore and A. Kunoth. Springer (2009) 409–542. | MR | Zbl

[27] D. Palitta, Matrix equation techniques for certain evolutionary partial differential equations. J. Sci. Comput. 87 (2021) 1–36. | MR | Zbl

[28] C. E. Powell, D. Silvester and V. Simoncini, An efficient reduced basis solver for stochastic Galerkin matrix equations. SIAM J. Sci. Comput. 39 (2017) A141–A163. | MR | Zbl

[29] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer (2016). | MR | Zbl

[30] D. Silvester and M. Mihajlović, A black-box multigrid preconditioner for the biharmonic equation. BIT 44 (2004) 151–163. | MR | Zbl | DOI

[31] V. Simoncini, Computational methods for linear matrix equations. SIAM Rev. 58 (2016) 377–441. | MR | Zbl | DOI

[32] O. Steinbach and M. Zank, A generalized inf-sup stable variational formulation for the wave equation. J. Math. Anal. Appl. 505 (2022) 24. | MR | Zbl | DOI

[33] K. Urban and A. T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations. C.R. Math. Acad. Sci. Paris 350 (2012) 203–207. | MR | Zbl | DOI

[34] K. Urban and A. T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. | MR | Zbl | DOI

[35] J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories. Numer. Math. 94 (2003) 195–202. | MR | Zbl | DOI

[36] M. Zank, The Newmark method and a space-time FEM for the second-order wave equation. In: Numerical Mathematics and Advanced Applications ENUMATH 2019, edited by F. J. Vermolen, C. Vuik. Vol. 139 of Lect. Notes Comput. Sci. Eng Springer (2021) 1225–1233. | MR | Zbl | DOI

Cité par Sources :