Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 893-942

In this paper, we propose a new semi-Lagrangian scheme for the polyatomic ellipsoidal BGK model. In order to avoid time step restrictions coming from convection term and small Knudsen number, we combine a semi-Lagrangian approach for the convection term with an implicit treatment for the relaxation term. We show how to explicitly solve the implicit step, thus obtaining an efficient and stable scheme for any Knudsen number. We also derive an explicit error estimate on the convergence of the proposed scheme for every fixed value of the Knudsen number.

DOI : 10.1051/m2an/2022022
Classification : 35Q20, 82C40, 97N40, 65M12
Keywords: Polyatomic ellipsoidal BGK model, Boltzmann equation, semi-Lagrangian scheme, error estimate, kinetic theory of gases
@article{M2AN_2022__56_3_893_0,
     author = {Boscarino, Sebastiano and Cho, Seung Yeon and Russo, Giovanni and Yun, Seok-Bae},
     title = {Convergence estimates of a {semi-Lagrangian} scheme for the ellipsoidal {BGK} model for polyatomic molecules},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {893--942},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022022},
     mrnumber = {4411479},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022022/}
}
TY  - JOUR
AU  - Boscarino, Sebastiano
AU  - Cho, Seung Yeon
AU  - Russo, Giovanni
AU  - Yun, Seok-Bae
TI  - Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 893
EP  - 942
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022022/
DO  - 10.1051/m2an/2022022
LA  - en
ID  - M2AN_2022__56_3_893_0
ER  - 
%0 Journal Article
%A Boscarino, Sebastiano
%A Cho, Seung Yeon
%A Russo, Giovanni
%A Yun, Seok-Bae
%T Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 893-942
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022022/
%R 10.1051/m2an/2022022
%G en
%F M2AN_2022__56_3_893_0
Boscarino, Sebastiano; Cho, Seung Yeon; Russo, Giovanni; Yun, Seok-Bae. Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 893-942. doi: 10.1051/m2an/2022022

[1] P. Andries, J.-F. Bourgat, P. Le Tallec and B. Perthame, Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases. Comput. Methods Appl. Mech. Eng. 191 (2002) 3369–3390. | MR | Zbl

[2] P. Andries, P. Le Tallec, J.-P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B Fluids 19 (2000) 813–830. | MR | Zbl

[3] C. Baranger, Y. Dauvois, G. Marois, J. Mathé, J. Mathiaud and L. Mieussens, A BGK model for high temperature rarefied gas flows. Eur. J. Mech.-B/Fluids 80 (2020) 1–12. | MR

[4] F. Bernard, A. Iollo and G. Puppo, BGK polyatomic model for rarefied flows. J. Sci. Comput. 78 (2019) 1893–1916. | MR

[5] P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems. Phys. Rev. 94 (1954) 511–525. | Zbl

[6] S. Boscarino, S. Y. Cho, M. Groppi and G. Russo, BGK models for inert mixtures: comparison and applications. Kinet. Relat. Models. 14 (2021) 895–928. | MR

[7] S. Boscarino, S.-Y. Cho, G. Russo and S.-B. Yun, High order conservative Semi-Lagrangian scheme for the BGK model of the Boltzmann equation. Commun. Comput. Phys. 29 (2021) 1–56. | MR

[8] S. Brull and J. Schneider, A new approach for the ellipsoidal statistical model. Contin. Mech. Thermodyn. 20 (2008) 63–74. | MR | Zbl

[9] S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 20 (2009) 489–508. | MR | Zbl

[10] R. E. Caflisch, S. Jin and G. Russo, Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34 (1997) 246–281. | MR | Zbl

[11] Z. Cai and R. Li, The NR x x method for polyatomic gases. J. Comput. Phys. 267 (2014) 63–91. | MR

[12] S. Y. Cho, S. Boscarino, M. Groppi and G. Russo, Conservative semi-Lagrangian schemes for a general consistent BGK model for inert gas mixtures. Preprint: (2020). | arXiv | MR

[13] S. Y. Cho, S. Boscarino, G. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part I: reconstruction. J. Comput. Phys. 432 (2021) 110159. | MR

[14] S. Y. Cho, S. Boscarino, G. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part II: applications. J. Comput. Phys. 436 (2021) 110281. | MR

[15] F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28 (1991) 26–42. | MR | Zbl

[16] N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229 (2010) 1927–1953. | MR | Zbl

[17] G. Dimarco and L. Pareschi, Numerical methods for kinetic equations. Acta Numer. 23 (2014) 369–520. | MR

[18] C. Elisabetta, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005) 1071–1091. | MR | Zbl

[19] F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172 (2001) 166–187. | MR | Zbl

[20] F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation. J. Sci. Comput. 46 (2011) 204–224. | MR | Zbl

[21] M. Groppi, G. Russo and G. Stracquadanio, Boundary conditions for semi-Lagrangian methods for the BGK model. Commun. Appl. Ind. Math. 7 (2016) 138–164. | MR

[22] M. Groppi, G. Russo and G. Stracquadanio, High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14 (2016) 389–414. | MR

[23] M. Groppi, G. Russo and G. Stracquadanio, Semi-lagrangian approximation of BGK models for inert and reactive gas mixtures. In: Meeting on Particle Systems and PDE’s. Springer, Cham (2016) 53–80. | MR

[24] L. H. Holway, Kinetic theory of shock structure using and ellipsoidal distribution function. In: Rarefied Gas Dynamics. Vol. I of Proc. Fourth Int. Symp., Univ. Toronto, 1964. Academic Press, New York (1966) 193–215. | MR

[25] J. Hu, R. Shu and X. Zhang, Asymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equation. SIAM J. Numer. Anal. 56 (2018) 942–973. | MR

[26] S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. | MR | Zbl

[27] C. Klingenberg, M. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture of polyatomic molecules. Preprint: (2018). | arXiv | MR

[28] S. Kosuge and K. Aoki, Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 3 (2018) 023401. | MR | Numdam

[29] S. Kosuge, K. Aoki and T. Goto, Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. In: AIP Conference Proceedings. Vol. 1786. AIP Publishing LLC (2016, November) 180004.

[30] S. Kosuge, H. W. Kuo and K. Aoki, A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure. J. Stat. Phys. 177 (2019) 209–251. | MR

[31] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3 (2000) 269–289. | MR | Zbl

[32] S. Park, Mathematical studies on the ellipsoidal BGK model of the Boltzmann equation for polyatomic particles. Ph.D. thesis, Sungkyunkwan University, Department of Mathematics (2018).

[33] S. Park and S.-B. Yun, Entropy production estimates for the polyatomic ellipsoidal BGK model. Appl. Math. Lett. 58 (2016) 26–33. | MR

[34] S. Park and S.-B. Yun, Cauchy problem for the ellipsoidal BGK model for polyatomic particles. J. Differ. Equ. 266 (2019) 7678–7708. | MR

[35] S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput. 32 (2007) 1–28. | MR | Zbl

[36] M. Pirner, A BGK model for gas mixtures of polyatomic molecules allowing for slow and fast relaxation of the temperatures. J. Stat. Phys. 173 (2018) 1660–1687. | MR

[37] J. M. Qiu and A. Christlieb, A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229 (2010) 1130–1149. | MR | Zbl

[38] J. M. Qiu and C. W. Shu, Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230 (2011) 863–889. | MR | Zbl

[39] G. Russo and F. Filbet, Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Models 2 (2009) 231–250. | MR | Zbl

[40] G. Russo and P. Santagati, A new class of large time step methods for the BGK models of the Boltzmann equation. Preprint: (2011). | arXiv

[41] G. Russo, P. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation. SIAM J. Numer. Anal. 50 (2012) 1111–1135. | MR | Zbl

[42] G. Russo and S. B. Yun, Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation. SIAM J. Numer. Anal. 56 (2018) 3580–3610. | MR

[43] P. Santagati, High order semi-Lagrangian schemes for the BGK model of the Boltzmann equation. Diss. PhD. thesis, Department of Mathematics and Computer Science, University of Catania (2007).

[44] E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149 (1999) 201–220. | MR | Zbl

[45] T. Xiong, G. Russo and J. M. Qiu, Conservative multi-dimensional semi-lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. Preprint: (2016). | arXiv | MR

[46] S. B. Yun, Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinet. Relat. Models 9 (2016) 605–619. | MR

[47] S. B. Yun, Ellipsoidal BGK model for polyatomic molecules near Maxwellians: a dichotomy in the dissipation estimate. J. Differ. Equ. 266 (2019) 5566–5614. | MR

Cité par Sources :