In this paper, we propose a new semi-Lagrangian scheme for the polyatomic ellipsoidal BGK model. In order to avoid time step restrictions coming from convection term and small Knudsen number, we combine a semi-Lagrangian approach for the convection term with an implicit treatment for the relaxation term. We show how to explicitly solve the implicit step, thus obtaining an efficient and stable scheme for any Knudsen number. We also derive an explicit error estimate on the convergence of the proposed scheme for every fixed value of the Knudsen number.
Keywords: Polyatomic ellipsoidal BGK model, Boltzmann equation, semi-Lagrangian scheme, error estimate, kinetic theory of gases
@article{M2AN_2022__56_3_893_0,
author = {Boscarino, Sebastiano and Cho, Seung Yeon and Russo, Giovanni and Yun, Seok-Bae},
title = {Convergence estimates of a {semi-Lagrangian} scheme for the ellipsoidal {BGK} model for polyatomic molecules},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {893--942},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {3},
doi = {10.1051/m2an/2022022},
mrnumber = {4411479},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022022/}
}
TY - JOUR AU - Boscarino, Sebastiano AU - Cho, Seung Yeon AU - Russo, Giovanni AU - Yun, Seok-Bae TI - Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 893 EP - 942 VL - 56 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022022/ DO - 10.1051/m2an/2022022 LA - en ID - M2AN_2022__56_3_893_0 ER -
%0 Journal Article %A Boscarino, Sebastiano %A Cho, Seung Yeon %A Russo, Giovanni %A Yun, Seok-Bae %T Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 893-942 %V 56 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022022/ %R 10.1051/m2an/2022022 %G en %F M2AN_2022__56_3_893_0
Boscarino, Sebastiano; Cho, Seung Yeon; Russo, Giovanni; Yun, Seok-Bae. Convergence estimates of a semi-Lagrangian scheme for the ellipsoidal BGK model for polyatomic molecules. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 893-942. doi: 10.1051/m2an/2022022
[1] , , and , Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases. Comput. Methods Appl. Mech. Eng. 191 (2002) 3369–3390. | MR | Zbl
[2] , , and , The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B Fluids 19 (2000) 813–830. | MR | Zbl
[3] , , , , and , A BGK model for high temperature rarefied gas flows. Eur. J. Mech.-B/Fluids 80 (2020) 1–12. | MR
[4] , and , BGK polyatomic model for rarefied flows. J. Sci. Comput. 78 (2019) 1893–1916. | MR
[5] , and , A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems. Phys. Rev. 94 (1954) 511–525. | Zbl
[6] , , and , BGK models for inert mixtures: comparison and applications. Kinet. Relat. Models. 14 (2021) 895–928. | MR
[7] , , and , High order conservative Semi-Lagrangian scheme for the BGK model of the Boltzmann equation. Commun. Comput. Phys. 29 (2021) 1–56. | MR
[8] and , A new approach for the ellipsoidal statistical model. Contin. Mech. Thermodyn. 20 (2008) 63–74. | MR | Zbl
[9] and , On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 20 (2009) 489–508. | MR | Zbl
[10] , and , Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34 (1997) 246–281. | MR | Zbl
[11] and , The NR method for polyatomic gases. J. Comput. Phys. 267 (2014) 63–91. | MR
[12] , , and , Conservative semi-Lagrangian schemes for a general consistent BGK model for inert gas mixtures. Preprint: (2020). | arXiv | MR
[13] , , and , Conservative semi-Lagrangian schemes for kinetic equations Part I: reconstruction. J. Comput. Phys. 432 (2021) 110159. | MR
[14] , , and , Conservative semi-Lagrangian schemes for kinetic equations Part II: applications. J. Comput. Phys. 436 (2021) 110281. | MR
[15] and , Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28 (1991) 26–42. | MR | Zbl
[16] , and , Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229 (2010) 1927–1953. | MR | Zbl
[17] and , Numerical methods for kinetic equations. Acta Numer. 23 (2014) 369–520. | MR
[18] , and , A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005) 1071–1091. | MR | Zbl
[19] , and , Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172 (2001) 166–187. | MR | Zbl
[20] and , An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation. J. Sci. Comput. 46 (2011) 204–224. | MR | Zbl
[21] , and , Boundary conditions for semi-Lagrangian methods for the BGK model. Commun. Appl. Ind. Math. 7 (2016) 138–164. | MR
[22] , and , High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14 (2016) 389–414. | MR
[23] , and , Semi-lagrangian approximation of BGK models for inert and reactive gas mixtures. In: Meeting on Particle Systems and PDE’s. Springer, Cham (2016) 53–80. | MR
[24] , Kinetic theory of shock structure using and ellipsoidal distribution function. In: Rarefied Gas Dynamics. Vol. I of Proc. Fourth Int. Symp., Univ. Toronto, 1964. Academic Press, New York (1966) 193–215. | MR
[25] , and , Asymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equation. SIAM J. Numer. Anal. 56 (2018) 942–973. | MR
[26] , Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. | MR | Zbl
[27] , and , A consistent kinetic model for a two-component mixture of polyatomic molecules. Preprint: (2018). | arXiv | MR
[28] and , Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 3 (2018) 023401. | MR | Numdam
[29] , and , Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. In: AIP Conference Proceedings. Vol. 1786. AIP Publishing LLC (2016, November) 180004.
[30] , and , A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure. J. Stat. Phys. 177 (2019) 209–251. | MR
[31] and , Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3 (2000) 269–289. | MR | Zbl
[32] , Mathematical studies on the ellipsoidal BGK model of the Boltzmann equation for polyatomic particles. Ph.D. thesis, Sungkyunkwan University, Department of Mathematics (2018).
[33] and , Entropy production estimates for the polyatomic ellipsoidal BGK model. Appl. Math. Lett. 58 (2016) 26–33. | MR
[34] and , Cauchy problem for the ellipsoidal BGK model for polyatomic particles. J. Differ. Equ. 266 (2019) 7678–7708. | MR
[35] and , Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput. 32 (2007) 1–28. | MR | Zbl
[36] , A BGK model for gas mixtures of polyatomic molecules allowing for slow and fast relaxation of the temperatures. J. Stat. Phys. 173 (2018) 1660–1687. | MR
[37] and , A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229 (2010) 1130–1149. | MR | Zbl
[38] and , Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230 (2011) 863–889. | MR | Zbl
[39] and , Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Models 2 (2009) 231–250. | MR | Zbl
[40] and , A new class of large time step methods for the BGK models of the Boltzmann equation. Preprint: (2011). | arXiv
[41] , and , Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation. SIAM J. Numer. Anal. 50 (2012) 1111–1135. | MR | Zbl
[42] and , Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation. SIAM J. Numer. Anal. 56 (2018) 3580–3610. | MR
[43] , High order semi-Lagrangian schemes for the BGK model of the Boltzmann equation. Diss. PhD. thesis, Department of Mathematics and Computer Science, University of Catania (2007).
[44] , , and , The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149 (1999) 201–220. | MR | Zbl
[45] , and , Conservative multi-dimensional semi-lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. Preprint: (2016). | arXiv | MR
[46] , Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinet. Relat. Models 9 (2016) 605–619. | MR
[47] , Ellipsoidal BGK model for polyatomic molecules near Maxwellians: a dichotomy in the dissipation estimate. J. Differ. Equ. 266 (2019) 5566–5614. | MR
Cité par Sources :





