In this paper, we propose and analyze a fully discrete finite element projection method for the magnetohydrodynamic (MHD) equations. A modified Crank–Nicolson method and the Galerkin finite element method are used to discretize the model in time and space, respectively, and appropriate semi-implicit treatments are applied to the fluid convection term and two coupling terms. These semi-implicit approximations result in a linear system with variable coefficients for which the unique solvability can be proved theoretically. In addition, we use a second-order decoupling projection method of the Van Kan type [Van Kan, SIAM J. Sci. Statist. Comput. 7 (1986) 870–891] in the Stokes solver, which computes the intermediate velocity field based on the gradient of the pressure from the previous time level, and enforces the incompressibility constraint via the Helmholtz decomposition of the intermediate velocity field. The energy stability of the scheme is theoretically proved, in which the decoupled Stokes solver needs to be analyzed in details. Error estimates are proved in the discrete L∞(0, T; L2) norm for the proposed decoupled finite element projection scheme. Numerical examples are provided to illustrate the theoretical results.
Keywords: Magnetohydrodynamic equations, modified Crank–Nicolson scheme, finite element, unique solvability, unconditional energy stability, error estimates
@article{M2AN_2022__56_3_767_0,
author = {Wang, Cheng and Wang, Jilu and Xia, Zeyu and Xu, Liwei},
title = {Optimal error estimates of a {Crank{\textendash}Nicolson} finite element projection method for magnetohydrodynamic equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {767--789},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {3},
doi = {10.1051/m2an/2022020},
mrnumber = {4411485},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2022020/}
}
TY - JOUR AU - Wang, Cheng AU - Wang, Jilu AU - Xia, Zeyu AU - Xu, Liwei TI - Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 767 EP - 789 VL - 56 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2022020/ DO - 10.1051/m2an/2022020 LA - en ID - M2AN_2022__56_3_767_0 ER -
%0 Journal Article %A Wang, Cheng %A Wang, Jilu %A Xia, Zeyu %A Xu, Liwei %T Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 767-789 %V 56 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2022020/ %R 10.1051/m2an/2022020 %G en %F M2AN_2022__56_3_767_0
Wang, Cheng; Wang, Jilu; Xia, Zeyu; Xu, Liwei. Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 767-789. doi: 10.1051/m2an/2022020
[1] and , Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131 (1996) 41–90. | MR | Zbl
[2] , Electromagnetic Processing of Materials: Fluid Mechanics and Its Applications. Springer, Netherlands (2012).
[3] , and , A second order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85 (1989) 257–283. | MR | Zbl
[4] and , The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, NY, (2002). | MR | Zbl
[5] , , and , A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59 (2014) 574–601. | MR | Zbl
[6] , , and , A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69 (2016) 1083–1114. | MR
[7] , Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762. | MR | Zbl
[8] , and , Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation. IMA J. Numer. Anal. 36 (2016) 1867–1897. | MR
[9] and , A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Eng. 346 (2019) 982–1001. | MR
[10] , A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000) 83–111. | MR | Zbl
[11] and , Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Herdelberg (1987). | MR | Zbl
[12] , Un résultat de convergence d’ordre deux en temps pour l’approximation des équations de Navier-Stokes par une technique de projection incrémentale. ESAIM: M2AN 33 (1999) 169–189. | MR | Zbl | Numdam
[13] and , Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case. Numer. Methods Part. Differ. Equ. 19 (2003) 709–731. | MR | Zbl
[14] , and , An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195 (2006) 6011–6045. | MR | Zbl
[15] , and , On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comp. 56 (1991) 523–563. | MR | Zbl
[16] , , and , An convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commu. Math. Sci. 14 (2016) 489–515. | MR
[17] and , On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238 (2007) 1–17. | MR | Zbl
[18] , Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35 (2015) 767–801. | MR
[19] , , A priori estimates and optimal finite element approximation of the MHD flow in smooth domains. ESAIM: M2AN 52 (2018) 181–206. | MR | Zbl | Numdam
[20] , and , Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 71 (2017) 21–43. | MR
[21] , , and , A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28 (2018) 659–695. | MR
[22] and , Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59 (1985) 308–323. | MR | Zbl
[23] , and , Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Methods Part. Differ. Equ. 30 (2014) 1083–1102. | MR | Zbl
[24] , and , A convergent linearized lagrange finite element method for the magneto-hydrodynamic equations in 2D nonsmooth and nonconvex domains. SIAM J. Numer. Anal. 58 (2020) 430–459. | MR
[25] and , Global small solutions to an MHD-type system: the three-dimensional case. Comm. Pure Appl. Math. 67 (2014) 531–580. | MR | Zbl
[26] , and , Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259 (2015) 5440–5485. | MR
[27] , and , Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62 (2015) 601–622. | MR
[28] and , An energy-preserving MAC–Yee scheme for the incompressible MHD equation. J. Comput. Phys. 174 (2001) 12–37. | MR | Zbl
[29] , Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM: M2AN 42 (2008) 1065–1087. | MR | Zbl | Numdam
[30] , Convergence of a finite difference scheme for two-dimensional incompressible magnetohydrodynamics. SIAM J. Numer. Anal. 54 (2016) 3550–3576. | MR
[31] , , and , Surface pressure poisson equation formulation of the primitive equations: numerical schemes. SIAM J. Numer. Anal. 41 (2003) 1163–1194. | MR | Zbl
[32] , and , Large-time behavior of solutions to the magnetohydrodynamics equations. Math. Ann. 304 (1996) 717–756. | MR | Zbl
[33] and , Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36 (1983) 635–664. | MR | Zbl
[34] , On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math. Comp. 65 (1996) 1039–1065. | MR | Zbl
[35] , A Textbook of Magnetohydrodyamics. Pergamon Press, Oxford-New York-Paris (1965). | MR
[36] , Sur l’approximation de la solution des équation de Navier-Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33 (1969) 377–385. | MR | Zbl
[37] , Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006). | MR | Zbl
[38] , and , Liquid Metal Flows: Magnetohydrodynamics and Application. American Institute of Aeronautics and Astronautic (1988).
[39] , A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Statist. Comput. 7 (1986) 870–891. | MR | Zbl
[40] and , Convergence of gauge method for incompressible flow. Math. Comp. 69 (2000) 1385–1407. | MR | Zbl | DOI
[41] and , Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32 (1995) 1017–1057. | MR | Zbl | DOI
[42] and , Projection method III: spatial discretization on the staggered grid. Math. Comp. 71 (2002) 27–47. | MR | Zbl
[43] , and , On an efficient second order backward difference Newton scheme for MHD system. J. Math. Anal. Appl. 458 (2018) 676–714. | MR | DOI
[44] , , and , A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305 (2016) 539–556. | MR | DOI
Cité par Sources :





