Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 767-789

In this paper, we propose and analyze a fully discrete finite element projection method for the magnetohydrodynamic (MHD) equations. A modified Crank–Nicolson method and the Galerkin finite element method are used to discretize the model in time and space, respectively, and appropriate semi-implicit treatments are applied to the fluid convection term and two coupling terms. These semi-implicit approximations result in a linear system with variable coefficients for which the unique solvability can be proved theoretically. In addition, we use a second-order decoupling projection method of the Van Kan type [Van Kan, SIAM J. Sci. Statist. Comput. 7 (1986) 870–891] in the Stokes solver, which computes the intermediate velocity field based on the gradient of the pressure from the previous time level, and enforces the incompressibility constraint via the Helmholtz decomposition of the intermediate velocity field. The energy stability of the scheme is theoretically proved, in which the decoupled Stokes solver needs to be analyzed in details. Error estimates are proved in the discrete L(0, TL2) norm for the proposed decoupled finite element projection scheme. Numerical examples are provided to illustrate the theoretical results.

DOI : 10.1051/m2an/2022020
Classification : 35K20, 65M12, 65M60, 76D05
Keywords: Magnetohydrodynamic equations, modified Crank–Nicolson scheme, finite element, unique solvability, unconditional energy stability, error estimates
@article{M2AN_2022__56_3_767_0,
     author = {Wang, Cheng and Wang, Jilu and Xia, Zeyu and Xu, Liwei},
     title = {Optimal error estimates of a {Crank{\textendash}Nicolson} finite element projection method for magnetohydrodynamic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {767--789},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/m2an/2022020},
     mrnumber = {4411485},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022020/}
}
TY  - JOUR
AU  - Wang, Cheng
AU  - Wang, Jilu
AU  - Xia, Zeyu
AU  - Xu, Liwei
TI  - Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 767
EP  - 789
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022020/
DO  - 10.1051/m2an/2022020
LA  - en
ID  - M2AN_2022__56_3_767_0
ER  - 
%0 Journal Article
%A Wang, Cheng
%A Wang, Jilu
%A Xia, Zeyu
%A Xu, Liwei
%T Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 767-789
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022020/
%R 10.1051/m2an/2022020
%G en
%F M2AN_2022__56_3_767_0
Wang, Cheng; Wang, Jilu; Xia, Zeyu; Xu, Liwei. Optimal error estimates of a Crank–Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 3, pp. 767-789. doi: 10.1051/m2an/2022020

[1] F. Armero and J. C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131 (1996) 41–90. | MR | Zbl

[2] S. Asai, Electromagnetic Processing of Materials: Fluid Mechanics and Its Applications. Springer, Netherlands (2012).

[3] J. B. Bell, P. Colella and H. M. Glaz, A second order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85 (1989) 257–283. | MR | Zbl

[4] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, NY, (2002). | MR | Zbl

[5] W. Chen, C. Wang, X. Wang and S. M. Wise, A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59 (2014) 574–601. | MR | Zbl

[6] K. Cheng, C. Wang, S. M. Wise and X. Yue, A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69 (2016) 1083–1114. | MR

[7] A. J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762. | MR | Zbl

[8] A. Diegel, C. Wang and S. M. Wise, Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation. IMA J. Numer. Anal. 36 (2016) 1867–1897. | MR

[9] H. Gao and W. Qiu, A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Eng. 346 (2019) 982–1001. | MR

[10] J. F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000) 83–111. | MR | Zbl

[11] V. Girault and P. Raviart, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Herdelberg (1987). | MR | Zbl

[12] J.-L. Guermond, Un résultat de convergence d’ordre deux en temps pour l’approximation des équations de Navier-Stokes par une technique de projection incrémentale. ESAIM: M2AN 33 (1999) 169–189. | MR | Zbl | Numdam

[13] J. L. Guermond and P. D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case. Numer. Methods Part. Differ. Equ. 19 (2003) 709–731. | MR | Zbl

[14] J. L. Guermond, P. D. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195 (2006) 6011–6045. | MR | Zbl

[15] M. Gunzburger, A. J. Meir and J. P. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comp. 56 (1991) 523–563. | MR | Zbl

[16] J. Guo, C. Wang, S. M. Wise and X. Yue, An H 2 convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation. Commu. Math. Sci. 14 (2016) 489–515. | MR

[17] C. He and Y. Wang, On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238 (2007) 1–17. | MR | Zbl

[18] Y. He, Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35 (2015) 767–801. | MR

[19] Y. He, J. Zou, A priori estimates and optimal finite element approximation of the MHD flow in smooth domains. ESAIM: M2AN 52 (2018) 181–206. | MR | Zbl | Numdam

[20] T. Heister, M. Mohebujjaman and L. G. Rebholz, Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 71 (2017) 21–43. | MR

[21] R. Hiptmair, L. Li, S. Mao and W. Zheng, A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28 (2018) 659–695. | MR

[22] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59 (1985) 308–323. | MR | Zbl

[23] W. Layton, H. Tran and C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Methods Part. Differ. Equ. 30 (2014) 1083–1102. | MR | Zbl

[24] B. Li, J. Wang and L. Xu, A convergent linearized lagrange finite element method for the magneto-hydrodynamic equations in 2D nonsmooth and nonconvex domains. SIAM J. Numer. Anal. 58 (2020) 430–459. | MR

[25] F. Lin and P. Zhang, Global small solutions to an MHD-type system: the three-dimensional case. Comm. Pure Appl. Math. 67 (2014) 531–580. | MR | Zbl

[26] F. Lin, L. Xu and P. Zhang, Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259 (2015) 5440–5485. | MR

[27] C. Liu, J. Shen and X. Yang, Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62 (2015) 601–622. | MR

[28] J.-G. Liu and W. Wang, An energy-preserving MAC–Yee scheme for the incompressible MHD equation. J. Comput. Phys. 174 (2001) 12–37. | MR | Zbl

[29] A. Prohl, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM: M2AN 42 (2008) 1065–1087. | MR | Zbl | Numdam

[30] J. Ridder, Convergence of a finite difference scheme for two-dimensional incompressible magnetohydrodynamics. SIAM J. Numer. Anal. 54 (2016) 3550–3576. | MR

[31] R. Samelson, R. Temam, C. Wang and S. Wang, Surface pressure poisson equation formulation of the primitive equations: numerical schemes. SIAM J. Numer. Anal. 41 (2003) 1163–1194. | MR | Zbl

[32] M. E. Schonbek, T. P. Schonbek and E. Süli, Large-time behavior of solutions to the magnetohydrodynamics equations. Math. Ann. 304 (1996) 717–756. | MR | Zbl

[33] M. Sermange and R. Temam, Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36 (1983) 635–664. | MR | Zbl

[34] J. Shen, On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math. Comp. 65 (1996) 1039–1065. | MR | Zbl

[35] J. A. Shercliff, A Textbook of Magnetohydrodyamics. Pergamon Press, Oxford-New York-Paris (1965). | MR

[36] R. Temam, Sur l’approximation de la solution des équation de Navier-Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33 (1969) 377–385. | MR | Zbl

[37] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006). | MR | Zbl

[38] Y. Unger, M. Mond and H. Branover, Liquid Metal Flows: Magnetohydrodynamics and Application. American Institute of Aeronautics and Astronautic (1988).

[39] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Statist. Comput. 7 (1986) 870–891. | MR | Zbl

[40] C. Wang and J.-G. Liu, Convergence of gauge method for incompressible flow. Math. Comp. 69 (2000) 1385–1407. | MR | Zbl | DOI

[41] E. Weinan and J.-G. Liu, Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32 (1995) 1017–1057. | MR | Zbl | DOI

[42] E. Weinan and J.-G. Liu, Projection method III: spatial discretization on the staggered grid. Math. Comp. 71 (2002) 27–47. | MR | Zbl

[43] X. Yang, G. Zhang and X. He, On an efficient second order backward difference Newton scheme for MHD system. J. Math. Anal. Appl. 458 (2018) 676–714. | MR | DOI

[44] J. Zhao, X. Yang, J. Shen and Q. Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305 (2016) 539–556. | MR | DOI

Cité par Sources :