Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 565-592

Depending on the physical and geometrical properties of a given porous medium, fluid flow can behave differently, going from a slow Darcian regime to more complicated Brinkman or even Forchheimer regimes for high velocity. The main problem is to determine where in the medium one regime is more adequate than others. In order to determine the low-speed and high-speed regions, this work proposes an adaptive strategy which is based on selecting the appropriate constitutive law linking velocity and pressure according to a threshold criterion on the magnitude of the fluid velocity itself. Both theoretical and numerical aspects are considered and investigated, showing the potentiality of the proposed approach. From the analytical viewpoint, we show existence of weak solutions to such model under reasonable hypotheses on the constitutive laws. To this end, we use a variational approach identifying solutions with minimizers of an underlying energy functional. From the numerical viewpoint, we propose a one-dimensional algorithm which tracks the transition zone between the low- and high-speed regions. By running numerical experiments using this algorithm, we illustrate some interesting behaviors of our adaptive model on academic cases and on small networks of intersecting fractures.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022016
Classification : 76S05, 35A01, 35A15, 65N50, 65N55
Keywords: Adaptive constitutive law, elliptic equation, fractured porous media, non-linearity, variational formulation
@article{M2AN_2022__56_2_565_0,
     author = {Fumagalli, Alessio and Patacchini, Francesco Saverio},
     title = {Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {565--592},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022016},
     mrnumber = {4386475},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022016/}
}
TY  - JOUR
AU  - Fumagalli, Alessio
AU  - Patacchini, Francesco Saverio
TI  - Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 565
EP  - 592
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022016/
DO  - 10.1051/m2an/2022016
LA  - en
ID  - M2AN_2022__56_2_565_0
ER  - 
%0 Journal Article
%A Fumagalli, Alessio
%A Patacchini, Francesco Saverio
%T Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 565-592
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022016/
%R 10.1051/m2an/2022016
%G en
%F M2AN_2022__56_2_565_0
Fumagalli, Alessio; Patacchini, Francesco Saverio. Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 565-592. doi: 10.1051/m2an/2022016

[1] E. Ahmed, J. Jaffré and J. E. Roberts, A reduced fracture model for two-phase flow with different rock types. Math. Comput. Simul. 137 (2017) 49–70. | MR | DOI

[2] C. Alboin, J. Jaffré, J. E. Roberts, X. Wang and C. Serres, Domain decomposition for some transmission problems in flow in porous media. In: Numerical Treatment of Multiphase Flows in Porous Media (Beijing, 1999). Vol. 552 of Lecture Notes in Phys. Springer, Berlin (2000) 22–34. | MR | Zbl | DOI

[3] L. Amir, M. Kern, V. Martin and J. E. Roberts, Décomposition de domaine et préconditionnement pour un modèle 3D en milieu poreux fracturé In: Proceeding of JANO 8, 8t Conference on Numerical Analysis and Optimization (2005).

[4] P. Angot, Well-posed Stokes/Brinkman and Stokes/Darcy coupling revisited with new jump interface conditions. ESAIM: M2AN 52 (2018) 1875–1911. | MR | Zbl | Numdam | DOI

[5] S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. Theory Methods App. 60 (2005) 515–545. | MR | Zbl | DOI

[6] J. Audu, F. Fairag and S. Messaoudi, On the well-posedness of generalized Darcy-Forchheimer equation. Boundary Value Prob. 2018 (2018) 1–17. | MR

[7] C. Bernardi, F. Hecht and O. Pironneau, Coupling Darcy and Stokes equations for porous media with cracks. ESAIM: M2AN 39 (2005) 7–35. | MR | Zbl | Numdam | DOI

[8] S. Berrone, S. Pieraccini and S. Scialò, A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35 (2013) B487–B510. | MR | Zbl | DOI

[9] S. Berrone, S. Pieraccini and S. Scialò, On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35 (2013) 908–935. | MR | Zbl | DOI

[10] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg, 2013. | MR | Zbl | DOI

[11] J. W. Both, J. M. Nordbotten and F. A. Radu, Free energy diminishing discretization of darcy-forchheimer flow in poroelastic media. In: Finite Volumes for Complex Applications IX – Methods, Theoretical Aspects, Examples, edited by R. Klöfkorn, E. Keilegavlen, F. A. Radu and J. Fuhrmann. Springer International Publishing, Cham, (2020) 203–211. | MR | DOI

[12] M. Bulíček, J. Málek and J. Žabenský, A generalization of the Darcy-Forchheimer equation involving an implicit, pressure-dependent relation between the drag force and the velocity. J. Math. Anal. App. 424 (2015) 785–801. | MR | Zbl | DOI

[13] C. Cancès, Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: M2AN 43 (2009) 973–1001. | MR | Zbl | Numdam | DOI

[14] B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Stefansson and A. Tatomir, Benchmarks for single-phase flow in fractured porous media. Adv. Water Res. 111 (2018) 239–258. | DOI

[15] L. Formaggia, A. Fumagalli, A. Scotti and P. Ruffo, A reduced model for Darcy’s problem in networks of fractures. ESAIM: M2AN 48 (2014) 1089–1116. | MR | Zbl | Numdam | DOI

[16] N. Frih, J. E. Roberts and A. Saada, Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12 (2008) 91–104. | MR | Zbl | DOI

[17] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009) 1309–1331. | MR | Zbl | DOI

[18] R. Granero-Belinchón and S. Shkoller, Well-posedness and decay to equilibrium for the Muskat problem with discontinuous permeability. Trans. Am. Math. Soc. 372 (2019) 2255–2286. | MR | DOI

[19] C. Johannes Van Duijn, H. Eichel, R. Helmig and I. S. Pop, Effective equations for two-phase flow in porous media: the effect of trapping on the microscale. Transp. Porous Media 69 (2007) 411–428. | MR | DOI

[20] E. Keilegavlen, R. Berge, A. Fumagalli, M. Starnoni, I. Stefansson, J. Varela and I. Berre, Porepy: an open-source software for simulation of multiphysics processes in fractured porous media. Comput. Geosci. 25 (2021) 243–265. | MR | DOI

[21] P. Knabner and J. E. Roberts, Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture. ESAIM: M2AN 48 (2014) 1451–1472. | MR | Zbl | Numdam | DOI

[22] K. Kumar, F. List, I. S. Pop and F. A. Radu, Formal upscaling and numerical validation of unsaturated flow models in fractured porous media. J. Comput. Phys. 407 (2020) 109138. | MR | DOI

[23] F. List and F. A. Radu, A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20 (2016) 341–353. | MR | DOI

[24] V. Martin, J. Jaffré and J. E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. | MR | Zbl | DOI

[25] F. A. Morales and R. E. Showalter, A Darcy-Brinkman model of fractures in porous media. J. Math. Anal. App. 452 (2017) 1332–1358. | MR | DOI

[26] J. T. Oden and J. N. Reddy, Variational Methods in Theoretical Mechanics. Springer, Berlin Heidelberg (1976). | MR | Zbl | DOI

[27] M. A. Peletier, Variational modelling: energies, gradient flows, and large deviations. Preprint (2014). | arXiv

[28] I. S. Pop, F. Radu and P. Knabner, Mixed finite elements for the Richards’ equation: linearization procedure. J. Comput. Appl. Math. 168 (2004) 365–373. | MR | Zbl | DOI

[29] F. A. Radu, K. Kumar, J. M. Nordbotten and I. S. Pop, A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities. IMA J. Numer. Anal. 38 (2017) 884–920. | MR | DOI

[30] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems. Lecture Notes Math. 606 (1977) 292–315. | MR | Zbl | DOI

[31] J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In: Handbook of Numerical Analysis. Vol. II, Handb. Numer. Anal., II. North-Holland, Amsterdam (1991) 523–639. | MR | Zbl

[32] I. Rybak and S. Metzger, A dimensionally reduced stokes-Darcy model for fluid flow in fractured porous media. App. Math. Comput. 384 (2020) 125260. | MR | DOI

[33] J. J. Salas, H. López and B. Molina, An analysis of a mixed finite element method for a Darcy-Forchheimer model. Math. Comput. Modell. 57 (2013) 2325–2338. | MR | Zbl | DOI

[34] F. Spena and A. Vacca, A potential formulation of non-linear models of flow through anisotropic porous media. Transp. Porous Media 45 (2001) 405–421. | MR | DOI

[35] J. L. Vazquez, The Porous Medium Equation. Oxford University Press (2006). | MR | Zbl | DOI

[36] Z. Zeng and R. Grigg, A criterion for non-Darcy flow in porous media. Transp. Porous Media 63 (2006) 57–69. | DOI

Cité par Sources :