Mathematical modeling and numerical analysis for the higher order Boussinesq system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 593-615

This study deals with higher-order asymptotic equations for the water-waves problem. We considered the higher-order/extended Boussinesq equations over a flat bottom topography in the well-known long wave regime. Providing an existence and uniqueness of solution on a relevant time scale of order 1/√ε and showing that the solution’s behavior is close to the solution of the water waves equations with a better precision corresponding to initial data, the asymptotic model is well-posed in the sense of Hadamard. Then we compared several water waves solitary solutions with respect to the numerical solution of our model. At last, we solve explicitly this model and validate the results numerically.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022015
Classification : 35Q35, 35L45, 35L60, 76B45, 76B55, 35C07, 65L99
Keywords: Water waves, Boussinesq system, higher-order asymptotic model, well-posedness, traveling waves, explicit solution, numerical validation
@article{M2AN_2022__56_2_593_0,
     author = {Khorbatly, Bashar and Lteif, Ralph and Israwi, Samer and Gerbi, St\'ephane},
     title = {Mathematical modeling and numerical analysis for the higher order {Boussinesq} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {593--615},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022015},
     mrnumber = {4388379},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022015/}
}
TY  - JOUR
AU  - Khorbatly, Bashar
AU  - Lteif, Ralph
AU  - Israwi, Samer
AU  - Gerbi, Stéphane
TI  - Mathematical modeling and numerical analysis for the higher order Boussinesq system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 593
EP  - 615
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022015/
DO  - 10.1051/m2an/2022015
LA  - en
ID  - M2AN_2022__56_2_593_0
ER  - 
%0 Journal Article
%A Khorbatly, Bashar
%A Lteif, Ralph
%A Israwi, Samer
%A Gerbi, Stéphane
%T Mathematical modeling and numerical analysis for the higher order Boussinesq system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 593-615
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022015/
%R 10.1051/m2an/2022015
%G en
%F M2AN_2022__56_2_593_0
Khorbatly, Bashar; Lteif, Ralph; Israwi, Samer; Gerbi, Stéphane. Mathematical modeling and numerical analysis for the higher order Boussinesq system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 593-615. doi: 10.1051/m2an/2022015

[1] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels. [Current Scholarship]. InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon (1991). | MR | Zbl

[2] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272 (1972) 47–78. | MR | Zbl | DOI

[3] J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178 (2005) 373–410. | MR | Zbl | DOI

[4] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17 (1872) 55–108. | MR | JFM | Numdam

[5] C. Burtea, Long time existence results for bore-type initial data for BBM-Boussinesq systems. J. Differ. Equ. 261 (2016) 4825–4860. | MR | DOI

[6] C. Burtea, New long time existence results for a class of Boussinesq-type systems. J. Math. Pures Appl. 106 (2016) 203–236. | MR | DOI

[7] F. Chazel, Influence of bottom topography on long water waves. ESAIM: M2AN 41 (2007) 771–799. | MR | Zbl | Numdam | DOI

[8] M. Chen, Exact solutions of various Boussinesq systems. Appl. Math. Lett. 11 (1998) 45–49. | MR | Zbl | DOI

[9] D. Clamond and D. Dutykh, Fast accurate computation of the fully nonlinear solitary surface gravity waves. Comput. Fluids 84 (2013) 35–38. | MR | Zbl | DOI

[10] W. Craig and C. Sulem, Numerical simulation of gravity waves. J. Comput. Phys. 108 (1993) 73–83. | MR | Zbl | DOI

[11] W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5 (1992) 497–522. | MR | Zbl | DOI

[12] O. Darrigol, The spirited horse, the engineer, and the mathematician: water waves in nineteenth-century hydrodynamics. Arch. Hist. Exact Sci. 58 (2003) 21–95. | MR | Zbl | DOI

[13] V. Duchêne and S. Israwi, Well-posedness of the Green-Naghdi and Boussinesq–Peregrine systems. Annal. Math. Blaise Pascal 25 (2018) 21–74. | MR | Numdam | DOI

[14] D. Dutykh and D. Clamond, Efficient computation of steady solitary gravity waves. Wave Motion 51 (2014) 86–99. | MR | DOI

[15] A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78 (1976) 237–246. | Zbl | DOI

[16] A. E. Green, N. Laws and P. M. Naghdi, On the theory of water waves. Proc. Roy. Soc. London Ser. A 338 (1974) 43–55. | MR | Zbl | DOI

[17] M. Haidar, T. El Arwadi and S. Israwi, Explicit solutions and numerical simulations for an asymptotic water waves model with surface tension. J. Appl. Math. Comput. 63 (2020) 655–681. | MR | DOI

[18] S. Israwi, Derivation and analysis of a new 2d Green-Naghdi system. Nonlinearity 23 (2010) 2889–2904. | MR | Zbl | DOI

[19] S. Israwi, Large time existence for 1D Green-Naghdi equations. Nonlinear Anal. 74 (2011) 81–93. | MR | Zbl | DOI

[20] S. Israwi and A. Mourad, An explicit solution with correctors for the Green-Naghdi equations. Mediterr. J. Math. 11 (2014) 519–532. | MR | Zbl | DOI

[21] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41 (1988) 891–907. | MR | Zbl | DOI

[22] B. Khorbatly, A remark on the well-posedness of the classical Green-Naghdi system. Math. Methods Appl. Sci. 44 (2021) 14545–14555. | MR | DOI

[23] B. Khorbatly and S. Israwi, Full justification for the extended Green-Naghdi system for an uneven bottom with/without surface tension. Publ. Res. Inst. Math. Sci. (2022). | MR

[24] B. Khorbatly, I. Zaiter and S. Israwi, Derivation and well-posedness of the extended Green-Naghdi equations for flat bottoms with surface tension. J. Math. Phys. 59 (2018) 071501. | MR | DOI

[25] B. Khorbatly, S. Israwi and T. A. L. Arwadi, An equivalent system to the 2d Green-Naghdi equations. BAU J. - Sci. Tech. hal-02525140, version 1 (2020).

[26] D. J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39 (1895) 422–443. | MR | JFM | DOI

[27] D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. J. Funct. Anal. 232 (2006) 495–539. | MR | Zbl | DOI

[28] D. Lannes, The water waves problem, In Vol. 188 of Mathematical Surveys and Monographs. American Mathematical Society. Mathematical analysis and asymptotics, Providence, RI (2013). | MR | Zbl

[29] D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21 (2009) 016601. | Zbl | DOI

[30] F. Linares, D. Pilod and J.-C. Saut, Well-posedness of strongly dispersive two-dimensional surface wave Boussinesq systems. SIAM J. Math. Anal. 44 (2012) 4195–4221. | MR | Zbl | DOI

[31] R. Lteif and S. Gerbi, A new class of higher-ordered/extended boussinesq system for efficient numerical simulations by splitting operators. Preprint (2021). | MR

[32] Y. Matsuno, Hamiltonian formulation of the extended Green-Naghdi equations. Phys. D 301/302 (2015) 1–7. | MR | DOI

[33] Y. Matsuno, Hamiltonian structure for two-dimensional extended Green-Naghdi equations. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 472 (2016) 20160127. | MR | DOI

[34] M. Ming, J.-C. Saut and P. Zhang, Long-time existence of solutions to Boussinesq systems. SIAM J. Math. Anal. 44 (2012) 4078–4100. | MR | Zbl | DOI

[35] J. W. S. Rayleigh, On waves. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1 (1876) 257–279. | JFM | DOI

[36] J.-C. Saut and L. Xu, The Cauchy problem on large time for surface waves Boussinesq systems. J. Math. Pures Appl. 97 (2012) 635–662. | MR | Zbl | DOI

[37] J.-C. Saut and L. Xu, Long time existence for a strongly dispersive boussinesq system. SIAM J. Numer. Anal. 52 (2020). | MR

[38] J.-C. Saut and L. Xu, Long time existence for the boussinesq-full dispersion systems. J. Differ. Equ. 269 (2020) 2627–2663. | MR | DOI

[39] J.-C. Saut and L. Xu, Long time existence for a two-dimensional strongly dispersive boussinesq system. Commun. Partial Differ. Equ. 46 (2021) 2057–2087. | MR | DOI

[40] J.-C. Saut, C. Wang and L. Xu, The Cauchy problem on large time for surface-waves-type Boussinesq systems II. SIAM J. Math. Anal. 49 (2017) 2321–2386. | MR | DOI

[41] F. Serre, Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille Blanche 39 (1953) 374–388. | DOI

[42] C. H. Su and C. S. Gardner, Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. J. Math. Phys. 10 (1969) 536–539. | MR | Zbl | DOI

[43] M. Tanaka, The stability of solitary waves. Phys. Fluids 29 (1986) 650–655. | MR | Zbl | DOI

[44] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (1968) 190–194. | DOI

Cité par Sources :