Continuous Lambertian shape from shading: A primal-dual algorithm
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 485-504

The continuous Lambertian shape from shading is studied using a PDE approach in terms of Hamilton–Jacobi equations. The latter will then be characterized by a maximization problem. In this paper we show the convergence of discretization and propose to use the well-known Chambolle–Pock primal-dual algorithm to solve numerically the shape from shading problem. The saddle-point structure of the problem makes the Chambolle–Pock algorithm suitable to approximate solutions of the discretized problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022014
Classification : 49L25, 62H35, 65K10, 49Q22, 78A05
Keywords: Hamilton–Jacobi equation, Shape-from-Shading, primal-dual algorithm, numerical analysis
@article{M2AN_2022__56_2_485_0,
     author = {Ennaji, Hamza and Igbida, Noureddine and Nguyen, Van Thanh},
     title = {Continuous {Lambertian} shape from shading: {A} primal-dual algorithm},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {485--504},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022014},
     mrnumber = {4385101},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022014/}
}
TY  - JOUR
AU  - Ennaji, Hamza
AU  - Igbida, Noureddine
AU  - Nguyen, Van Thanh
TI  - Continuous Lambertian shape from shading: A primal-dual algorithm
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 485
EP  - 504
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022014/
DO  - 10.1051/m2an/2022014
LA  - en
ID  - M2AN_2022__56_2_485_0
ER  - 
%0 Journal Article
%A Ennaji, Hamza
%A Igbida, Noureddine
%A Nguyen, Van Thanh
%T Continuous Lambertian shape from shading: A primal-dual algorithm
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 485-504
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022014/
%R 10.1051/m2an/2022014
%G en
%F M2AN_2022__56_2_485_0
Ennaji, Hamza; Igbida, Noureddine; Nguyen, Van Thanh. Continuous Lambertian shape from shading: A primal-dual algorithm. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 485-504. doi: 10.1051/m2an/2022014

[1] M. Agueh, G. Carlier and N. Igbida, On the minimizing movement with the 1-Wasserstein distance. ESAIM Control Optim. Calc. Var. 24 (2018) 1415–1427. | MR | Zbl | Numdam

[2] A. Ahmed and A. Farag, A new formulation for shape from shading for non-Lambertian surfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 2 (2006) 1817–1824.

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000). | MR | Zbl

[4] M. Bardi and M. Falcone, Discrete approximation of the minimal time function for systems with regular optimal trajectories. In: Analysis and Optimization of Systems. Lect. Notes Control Inf. Sci. Vol. 144 (1990) 103–112. | MR | Zbl

[5] J.-D. Benamou and G. Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167 (2015) 1–26. | MR

[6] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Vol. 183 of Applied Mathematical Sciences. Springer, New York (2013). | MR | Zbl

[7] F. Camilli and L. Grüne, Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations. SIAM J. Numer. Anal. 38 (2000) 1540–1560. | MR | Zbl

[8] F. Camilli and A. Siconolfi, Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems. Indiana Univ. Math. J. 48 (1999) 1111–1131. | MR | Zbl

[9] F. Camilli and S. Tozza, A unified approach to the well-posedness of some non-Lambertian models in shape-from-shading theory. SIAM J. Imaging Sci. 10 (2017) 26–46. | MR

[10] A. Chambolle, An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20 (2004) 89–97. | MR

[11] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40 (2011) 120–145. | MR | Zbl

[12] F. Courteille, A. Crouzil, J.-D. Durou and P. Gurdjos, Towards shape from shading under realistic photographic conditions. In: Proceedings of the 17th International Conference on Pattern Recognition. Vol. 2 (2004) 277–280.

[13] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277 (1983) 1–42. | MR | Zbl

[14] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. New Ser. 27 (1992) 1–67. | MR | Zbl

[15] A. Crouzil, X. Descombes and J.-D. Durou, A multiresolution approach for shape from shading coupling deterministic and stochastic optimization. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1416–1421.

[16] P. Daniel and J.-D. Durou, From deterministic to stochastic methods for shape from shading. In: Proc. 4th Asian Conf. Comp. Vis. (2000).

[17] J.-D. Durou, M. Falcone and M. Sagona, Numerical methods for shape-from-shading: a new survey with benchmarks. Comput. Vis. Image. Underst. 109 (2008) 22–43.

[18] S. Dweik and F. Santambrogio, Summability estimates on transport densities with Dirichlet regions on the boundary via symmetrization techniques. ESAIM Control Optim. Calc. Var. 24 (2018) 1167–1180. | MR | Zbl | Numdam

[19] H. Ennaji, N. Igbida and V. T. Nguyen, Augmented Lagrangian methods for degenerate Hamilton-Jacobi equations. Calc. Var. Part. Differ. Equ. 60 (2021) 238. | MR

[20] H. Ennaji, N. Igbida and V. T. Nguyen, Beckmann-type problem for degenerate Hamilton-Jacobi equations. Quart. Appl. Math. (2021) (in press) DOI: . | DOI | MR

[21] M. Falcone, T. Giorgi and P. Loreti, Level sets of viscosity solutions: some applications to fronts and Rendez-Vous problems. SIAM J. Appl. Math. 54 (1994) 1335–1354. | MR | Zbl | DOI

[22] M. Falcone, M. Sagona and A. Seghini, A scheme for the shape-from-shading model with black shadows. In: Numerical Mathematics and Advanced Applications (2003) 503–512. | MR | Zbl | DOI

[23] A. Fathi and A. Siconolfi, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differ. Equ. 22 (2005) 185–228. | MR | Zbl | DOI

[24] A. Festa, Analysis and approximation of Hamilton Jacobi equations on irregular data. Ph.D. thesis, University of Rome, Sapienza (2012).

[25] A. Festa and M. Falcone, An approximation scheme for an Eikonal equation with discontinuous coefficient. SIAM J. Numer. Anal. 52 (2014) 236–257. | MR | Zbl | DOI

[26] H. Hayakawa, S. Nishida, Y. Wada and M. Kawato, A computational model for shape estimation by integration of shading and edge information. Neural Netw. 7 (1994) 1193–1209. | DOI

[27] B. K. Horn, Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. Technical report, USA (1970).

[28] B. K. P. Horn, Obtaining Shape from Shading Information, MIT Press, Cambridge, USA, (1989) 123–171.

[29] B. K. P. Horn and M. J. Brooks, The variational approach to shape from shading. Comput. Vis. Graph. Image Process. 33 (1986) 174–208. | Zbl | DOI

[30] N. Igbida and V. T. Nguyen, Augmented Lagrangian method for optimal partial transportation. IMA J. Numer. Anal. 38 (2018) 156–183. | MR

[31] N. Igbida, V. T. Nguyen and J. Toledo, On the uniqueness and numerical approximations for a matching problem. SIAM J. Optim. 27 (2017) 2459–2480. | MR

[32] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | MR | Zbl

[33] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations. In: Research Notes in Mathematics. Vol. 69. Pitman Advanced Publishing Program, Boston – London – Melbourne (1982). | MR | Zbl

[34] P.-L. Lions, E. Rouy and A. Tourin, Shape-from-shading, viscosity solutions and edges. Numer. Math. 64 (1993) 323–353. | MR | Zbl

[35] R. Monneau, Introduction to the fast marching method (2010). | HAL

[36] A. P. Pentland, Local shading analysis. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6 (1984) 170–187.

[37] T. Ping-Sing and M. Shah, Shape from shading using linear approximation. Image Vis. Comput. 12 (1994) 487–498.

[38] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: 2011 International Conference on Computer Vision (2011) 1762–1769.

[39] E. Prados, F. Camilli and O. Faugeras, A viscosity solution method for shape-from-shading without image boundary data. ESAIM: M2AN 40 (2006) 393–412. | MR | Zbl | Numdam

[40] Y. Quéau, J. Mélou, F. Castan, D. Cremers and J.-D. Durou, A variational approach to shape-from-shading under natural illumination. In: International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (2018) 342–357. | DOI

[41] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29 (1992) 867–884. | MR | Zbl | DOI

[42] A. Tankus, N. Sochen and Y. Yeshurun, Shape-from-shading under perspective projection. Int. J. Comput. Vision 63 (2005) 21–43. | DOI

[43] S. Tozza and M. Falcone, Analysis and approximation of some shape-from-shading models for non-Lambertian surfaces. J. Math. Imaging Vision 55 (2016) 153–178. | MR | DOI

[44] R. Zhang, P.-S. Tsai, J. E. Cryer and M. Shah, Shape from shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999) 690–706. | DOI

Cité par Sources :