Rank-adaptive structure-preserving model order reduction of Hamiltonian systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 617-650

This work proposes an adaptive structure-preserving model order reduction method for finite-dimensional parametrized Hamiltonian systems modeling non-dissipative phenomena. To overcome the slowly decaying Kolmogorov width typical of transport problems, the full model is approximated on local reduced spaces that are adapted in time using dynamical low-rank approximation techniques. The reduced dynamics is prescribed by approximating the symplectic projection of the Hamiltonian vector field in the tangent space to the local reduced space. This ensures that the canonical symplectic structure of the Hamiltonian dynamics is preserved during the reduction. In addition, accurate approximations with low-rank reduced solutions are obtained by allowing the dimension of the reduced space to change during the time evolution. Whenever the quality of the reduced solution, assessed via an error indicator, is not satisfactory, the reduced basis is augmented in the parameter direction that is worst approximated by the current basis. Extensive numerical tests involving wave interactions, nonlinear transport problems, and the Vlasov equation demonstrate the superior stability properties and considerable runtime speedups of the proposed method as compared to global and traditional reduced basis approaches.

DOI : 10.1051/m2an/2022013
Classification : 37N30, 65P10, 78M34, 37J15
Keywords: Reduced basis methods (RBM), Hamiltonian dynamics, symplectic manifolds, dynamical low-rank approximation, adaptive algorithms
@article{M2AN_2022__56_2_617_0,
     author = {Hesthaven, Jan S. and Pagliantini, Cecilia and Ripamonti, Nicol\`o},
     title = {Rank-adaptive structure-preserving model order reduction of {Hamiltonian} systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {617--650},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022013},
     mrnumber = {4390364},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022013/}
}
TY  - JOUR
AU  - Hesthaven, Jan S.
AU  - Pagliantini, Cecilia
AU  - Ripamonti, Nicolò
TI  - Rank-adaptive structure-preserving model order reduction of Hamiltonian systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 617
EP  - 650
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022013/
DO  - 10.1051/m2an/2022013
LA  - en
ID  - M2AN_2022__56_2_617_0
ER  - 
%0 Journal Article
%A Hesthaven, Jan S.
%A Pagliantini, Cecilia
%A Ripamonti, Nicolò
%T Rank-adaptive structure-preserving model order reduction of Hamiltonian systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 617-650
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022013/
%R 10.1051/m2an/2022013
%G en
%F M2AN_2022__56_2_617_0
Hesthaven, Jan S.; Pagliantini, Cecilia; Ripamonti, Nicolò. Rank-adaptive structure-preserving model order reduction of Hamiltonian systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 617-650. doi: 10.1051/m2an/2022013

[1] P. Benner, D. Kressner and V. Mehrmann, Skew-Hamiltonian and Hamiltonian eigenvalue problems: theory, algorithms and applications. Springer, Dordrecht (2005) 3–39. | MR | Zbl

[2] N. Cagniart, Y. Maday and B. Stamm, Model order reduction for problems with large convection effects. In: Contributions to partial differential equations and applications. Vol. 47 of Comput. Methods Appl. Sci. Springer, Cham (2019) 131–150. | MR

[3] J. G. Caputo, N. K. Efremidis and C. Hang, Fourier-mode dynamics for the nonlinear schrödinger equation in one-dimensional bounded domains. Phys. Rev. E 84 (2011) 036601.

[4] K. Carlberg, Adaptive h -refinement for reduced-order models, Int. J. Numer. Methods Eng. 102 (2015) 1192–1210. | MR

[5] E. Celledoni and B. Owren, A class of intrinsic schemes for orthogonal integration. SIAM J. Numer. Anal. 40 (2002) 2069–2084. | MR | Zbl

[6] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32 (2010) 2737–2764. | MR | Zbl

[7] M. Cheng, T. Y. Hou and Z. Zhang, A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: adaptivity and generalizations. J. Comput. Phys. 242 (2013) 753–776. | MR | Zbl

[8] M. Couplet, P. Sagaut and C. Basdevant, Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow. J. Fluid Mech. 491 (2003) 275–284. | MR | Zbl

[9] V. Ehrlacher, D. Lombardi, O. Mula and F.-X. Vialard, Nonlinear model reduction on metric spaces. application to one-dimensional conservative PDEs in Wasserstein spaces. ESAIM: M2AN 54 (2020) 2159–2197. | MR | Numdam

[10] F. Feppon and P. F. J. Lermusiaux, A geometric approach to dynamical model order reduction. SIAM J. Matrix Anal. Appl. 39 (2018) 510–538. | MR

[11] E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale pic-method. Math. Models Methods Appl. Sci. 19 (2009) 175–197. | MR | Zbl

[12] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall Professional Technical Reference (1981). | MR | Zbl

[13] L. Giraud and J. Langou, A robust criterion for the modified Gram-Schmidt algorithm with selective reorthogonalization. SIAM J. Sci. Comput. 25 (2003) 417–441. | MR | Zbl

[14] W. Givens, Computation of plane unitary rotations transforming a general matrix to triangular form. J. Soc. Ind. Appl. Math. 6 (1958) 26–50. | MR | Zbl

[15] M. A. Grepl and A. T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. | MR | Zbl | Numdam

[16] T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919) 292–296. | MR | JFM

[17] E. Hairer, C. Lubich and G. Wanner, Structure-preserving algorithms for ordinary differential equations. In: Geometric Numerical Integration, 2nd edition. Vol. 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2006). | MR | Zbl

[18] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edition. Vol. 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1993). | MR | Zbl

[19] S. A. Hirstoaga, Design and performant implementation of numerical methods for multiscale problems in plasma physics. Habilitation à diriger des recherches, Université de Strasbourg, IRMA UMR 7501 (April , 2019).

[20] A. Iollo and D. Lombardi, Advection modes by optimal mass transfer, Phys. Rev. E 89 (2014).

[21] O. Koch and C. Lubich, Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29 (2007) 434–454. | MR | Zbl

[22] K. Lee and K. T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404 (2020). | MR

[23] M. Meyer and H. G. Matthies, Efficient model reduction in non-linear dynamics using the karhunen-loève expansion and dual-weighted-residual methods. Comput. Mech. 31 (2003) 179–191. | Zbl

[24] E. Musharbash and F. Nobile, Symplectic dynamical low rank approximation of wave equations with random parameters. Technical Report 18.2017, EPFL, Switzerland (2017).

[25] M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing. C. R. Math. Acad. Sci. Paris 351 (2013) 901–906. | MR | Zbl

[26] C. Pagliantini, Dynamical reduced basis methods for Hamiltonian systems. Numer. Math. 148 (2021) 409–448. | MR

[27] C. Paige and C. Van Loan, A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl. 41 (1981) 11–32. | MR | Zbl

[28] B. Peherstorfer and K. Willcox, Online adaptive model reduction for nonlinear systems via low-rank updates. SIAM J. Sci. Comput. 37 (2015) A2123–A2150. | MR

[29] L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38 (2016) A1–A27. | MR

[30] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Vol. 92 of Unitext. Springer, Cham (2016) La Matematica per il 3+2. | MR | Zbl

[31] J. Reiss, P. Schulze, J. Sesterhenn and V. Mehrmann, The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena. SIAM J. Sci. Comput. 40 (2018) A1322–A1344. | MR

[32] D. Rim, B. Peherstorfer and K. T. Mandli, Manifold approximations via transported subspaces: model reduction for transport-dominated problems. Preprint (2019). | arXiv | MR

[33] A. Salam, On theoretical and numerical aspects of symplectic Gram–Schmidt-like algorithms. Numer. Algorithms 39 (2005) 437–462. | MR | Zbl

[34] T. P. Sapsis and P. F. J. Lermusiaux, Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Phys. D: Nonlinear Phenomena 241 (2012) 60–76. | MR | Zbl

[35] A. Spantini, Preconditioning techniques for stochastic partial differential equations. Ph.D. thesis, Massachusetts Institute of Technology (2013).

[36] R. Ştefănescu, A. Sandu and I. M. Navon, Comparison of pod reduced order strategies for the nonlinear 2d shallow water equations. Int. J. Numer. Methods Fluids 76 (2014) 497–521. | MR

[37] S. Sultana and Z. Rahman, Hamiltonian formulation for water wave equation. Open J. Fluid Dyn. 03 (2013) 75–81.

[38] T. Taddei, A registration method for model order reduction: data compression and geometry reduction. SIAM J. Sci. Comput. 42 (2020) A997–A1027. | MR

[39] K. Urban and A. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. | MR | Zbl

[40] C. F. Van Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra Appl. 61 (1984) 233–251. | MR | Zbl

[41] G. Welper, Interpolation of functions with parameter dependent jumps by transformed snapshots. SIAM J. Sci. Comput. 39 (2017) A1225–A1250. | MR

Cité par Sources :