A Glioblastoma PDE-ODE model including chemotaxis and vasculature
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 407-431

In this work we analyse a PDE-ODE problem modelling the evolution of a Glioblastoma, which includes chemotaxis term directed to vasculature. First, we obtain some a priori estimates for the (possible) solutions of the model. In particular, under some conditions on the parameters, we obtain that the system does not develop blow-up at finite time. In addition, we design a fully discrete finite element scheme for the model which preserves some pointwise estimates of the continuous problem. Later, we make an adimensional study in order to reduce the number of parameters. Finally, we detect the main parameters determining different width of the ring formed by proliferative and necrotic cells and different regular/irregular behaviour of the tumor surface.

DOI : 10.1051/m2an/2022012
Classification : 35A01, 35B40, 35M10, 35Q92, 47J35, 92B05
Keywords: Glioblastoma, chemotaxis, PDE-ODE system, numerical scheme
@article{M2AN_2022__56_2_407_0,
     author = {Fern\'andez-Romero, Antonio and Guill\'en-Gonz\'alez, Francisco and Su\'arez, Antonio},
     title = {A {Glioblastoma} {PDE-ODE} model including chemotaxis and vasculature},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {407--431},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/m2an/2022012},
     mrnumber = {4382752},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022012/}
}
TY  - JOUR
AU  - Fernández-Romero, Antonio
AU  - Guillén-González, Francisco
AU  - Suárez, Antonio
TI  - A Glioblastoma PDE-ODE model including chemotaxis and vasculature
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 407
EP  - 431
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022012/
DO  - 10.1051/m2an/2022012
LA  - en
ID  - M2AN_2022__56_2_407_0
ER  - 
%0 Journal Article
%A Fernández-Romero, Antonio
%A Guillén-González, Francisco
%A Suárez, Antonio
%T A Glioblastoma PDE-ODE model including chemotaxis and vasculature
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 407-431
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022012/
%R 10.1051/m2an/2022012
%G en
%F M2AN_2022__56_2_407_0
Fernández-Romero, Antonio; Guillén-González, Francisco; Suárez, Antonio. A Glioblastoma PDE-ODE model including chemotaxis and vasculature. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 2, pp. 407-431. doi: 10.1051/m2an/2022012

[1] J. C. L. Alfonso, K. Talkenberger, M. Seifert, B. Klink, A. Hawkins-Daarud, K. R. Swanson, H. Hatzikirou and A. Deutsch, The biology and mathematical modelling of glioma invasion: A review. J. R. Soc. Interface 14 (2017) 20170490.

[2] N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations. J. Differ. Equ. 33 (1979) 201–225. | MR | Zbl

[3] A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60 (1998) 857–899. | Zbl

[4] A. Baldock, R. Rockne, A. Boone, M. Neal, C. Bridge, L. Guyman, M. Mrugala, J. Rockhill, K. R. Swanson, A. D. Trister and A. Hawkins-Daarud, From patient-specific mathematical neuro-oncology to precision medicine. Front. Oncol. 3 (2013) 62.

[5] N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015) 1663–1763. | MR

[6] M. A. J. Chaplain, Mathematical modelling of angiogenesis. J. Neuro-Oncol. 50 (2000) 37–51.

[7] P. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2 (1973) 17–31. | MR | Zbl

[8] L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Math. Models Methods Appl. Sci. 72 (2004) 1–28. | MR | Zbl

[9] A. L. De Araujo and P. M. De Magalhães, Existence of solutions and optimal control for a model of tissue invasion by solid tumours. J. Math. Anal. App. 421 (2015) 842–877. | MR | Zbl

[10] H. Enderling and M. A. J. Chaplain, Mathematical modeling of tumor growth and treatment. Curr. Pharm. Des. 20 (2014) 4934–4940.

[11] A. Fernández-Romero, F. Guillén-González and A. Suárez, Determining parameters giving different growths of a new Glioblastoma differential model. Preprint (2021). | arXiv

[12] A. Fernández-Romero, F. Guillén-González and A. Suárez, Theoretical and numerical analysis for a hybrid tumor model with diffusion depending on vasculature. J. Math. Anal. App. 503 (2021) 29. | MR

[13] A. Friedman, Partial Differential Equations. Holt, Reinhart and Winston, New York (1969). | MR | Zbl

[14] A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks. J. Math. Anal. App. 272 (2002) 138–163. | MR | Zbl

[15] T. Hillen and K. J. Painter, A users guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009) 183–217. | MR | Zbl

[16] D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. Jahresber. Dtsch. Math.-Ver. 1052003 (1970) 103–165. | MR | Zbl

[17] R. L. Klank, S. S. Rosenfeld and D. J. Odde, A Brownian dynamics tumor progression simulator with application to glioblastoma. Converg. Sci. Phys. Oncol. 4 (2018) 015001.

[18] J. Li and Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space. J. Differ. Equ. 268 (2020) 6940–6970. | MR

[19] G. Liţcanu and C. Morales-Rodrigo, Asymptotic behavior of global solutions to a model of cell invasion. Math. Models Methods Appl. Sci. 20 (2010) 1721–1758. | MR | Zbl

[20] A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model. Math. Models Methods. Appl. Sci. 20 (2010) 449–476. | MR | Zbl | DOI

[21] A. Martínez-González, G. F. Calvo, L. A. Pérez-Romasanta and V. M. Pérez-García, Hypoxic cell waves around necrotic cores in glioblastoma: A mathematical model and its therapeutical implications. Bull. Math. Biol. 74 (2012) 2875–2896. | MR | Zbl | DOI

[22] A. Martínez-González, M. Durán-Prado, G. F. Calvo, F. J. Alcaín, L. A. Pérez-Romasanta and V. M. Pérez-García, Combined therapies of antithrombotics and antioxidants delay in silico brain tumour progression. Math. Med. Biol. 32 (2015) 239–262. | MR | DOI

[23] D. Molina, L. Vera-Ramírez, J. Pérez-Beteta, E. Arana and V. M. Pérez-García, Prognostic models based on imaging findings in glioblastoma: Human versus Machine. Sci. Rep. 9 (2019) 5982. | DOI

[24] M. Negreanu and J. I. Tello, On a parabolic-ODE system of chemotaxis. Disc. Cont. Dyn. Syst. Ser. S 13 (2020) 279–292. | MR

[25] M. Negreanu, J. I. Tello and A. M. Vargas, A note on a periodic parabolic-ODE chemotaxis system. Appl. Math. Lett. 106 (2020) 106351. | MR | DOI

[26] Q. T. Ostrom, H. Gittleman, P. Liao, C. Rouse, Y. Chen, J. Dowling, Y. Wolinsky, C. Kruchko and J. Barnholtz-Sloan, CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the united states in 2007–2011. Neuro-Oncol. 16 (2014) iv1–iv63. | DOI

[27] J. Pérez-Beteta, A. Martínez-González, D. Molina, M. Amo-Salas, B. Luque, E. Arregui, M. Calvo, J. M. Borrás, C. López, M. Claramonte and J. A. Barcia, Glioblastoma: Does the pretreatment geometry matter? A postcontrast T1 MRI-based study. Eur. Radiol. 27 (2017) 163–169. | DOI

[28] J. Pérez-Beteta, D. Molina-García, J. A. Ortiz-Alhambra, A. Fernández-Romero, B. Luque, E. Arregui, M. Calvo, J. M. Borrás, B. Meléndez, A. Rodriguez De Lope and R. Moreno De La Presa, Tumor surface regularity at MR imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 288 (2018) 218–225. | DOI

[29] J. Pérez-Beteta, D. Molina-García, A. Martínez-González, A. Henares-Molina, M. Amo-Salas, B. Luque, E. Arregui, M. Calvo, J. M. Borrás, J. Martino and C. Velásquez, Morphological MRI-based features provide pretreatment survival prediction in glioblastoma. Eur. Radiol. 29 (2019) 1968–1977. | DOI

[30] J. Pérez-Beteta, J. Belmonte-Beitia and V. M. Pérez-García, Tumor width on T1-weighted MRI images of glioblastoma as a prognostic biomarker: A mathematical model. Math. Model. Nat. Phenom. 15 (2020) 19. | MR | DOI

[31] B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic. Appl. Math. 49 (2004) 539–564. | MR | Zbl | DOI

[32] M. Protopapa, A. Zygogianni, G. S. Stamatakos, C. Antypas, C. Armpilia, N. K. Uzunoglu and V. Kouloulias, Clinical implications of in silico mathematical modeling for glioblastoma: A critical review. J. Neuro-Oncol. 136 (2018) 1–11. | DOI

[33] B. D. Sleeman and H. A. Levine, A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57 (1997) 683–730. | MR | Zbl | DOI

[34] A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61 (2000) 183–212. | MR | Zbl | DOI

[35] A. Stevens and H. G. Othmer, Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57 (1997) 1044–1081. | MR | Zbl | DOI

[36] Y. Tao and C. Cui, A density-dependent chemotaxis-haptotaxis system modeling cancer invasion. J. Math. Anal. App. 367 (2010) 612–624. | MR | Zbl | DOI

[37] Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source. SIAM J. Appl. Math. 41 (2009) 1533–1558. | MR | Zbl | DOI

[38] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source. SIAM J. Appl. Math. 43 (2012) 685–704. | MR | Zbl | DOI

[39] J. Unkelbach, B. H. Menze, E. Konukoglu, F. Dittmann, M. Le, N. Ayache and H. A. Shih, Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation. Phys. Med. Biol. 59 (2014) 747–770. | DOI

Cité par Sources :