An offline-online strategy for multiscale problems with random defects
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 237-260

In this paper, we propose an offline-online strategy based on the Localized Orthogonal Decomposition (LOD) method for elliptic multiscale problems with randomly perturbed diffusion coefficient. We consider a periodic deterministic coefficient with local defects that occur with probability p. The offline phase pre-computes entries to global LOD stiffness matrices on a single reference element (exploiting the periodicity) for a selection of defect configurations. Given a sample of the perturbed diffusion the corresponding LOD stiffness matrix is then computed by taking linear combinations of the pre-computed entries, in the online phase. Our computable error estimates show that this yields a good approximation of the solution for small p, which is illustrated by extensive numerical experiments. This makes the proposed technique attractive already for moderate sample sizes in a Monte Carlo simulation.

DOI : 10.1051/m2an/2022006
Classification : 65N30, 65N12, 65N15, 35J15
Keywords: Numerical homogenization, multiscale method, finite elements, random perturbations
@article{M2AN_2022__56_1_237_0,
     author = {M\r{a}lqvist, Axel and Verf\"urth, Barbara},
     title = {An offline-online strategy for multiscale problems with random defects},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {237--260},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2022006},
     mrnumber = {4378546},
     zbl = {1484.65302},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022006/}
}
TY  - JOUR
AU  - Målqvist, Axel
AU  - Verfürth, Barbara
TI  - An offline-online strategy for multiscale problems with random defects
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 237
EP  - 260
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022006/
DO  - 10.1051/m2an/2022006
LA  - en
ID  - M2AN_2022__56_1_237_0
ER  - 
%0 Journal Article
%A Målqvist, Axel
%A Verfürth, Barbara
%T An offline-online strategy for multiscale problems with random defects
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 237-260
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022006/
%R 10.1051/m2an/2022006
%G en
%F M2AN_2022__56_1_237_0
Målqvist, Axel; Verfürth, Barbara. An offline-online strategy for multiscale problems with random defects. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 237-260. doi: 10.1051/m2an/2022006

[1] A. Abdulle and P. Henning, A reduced basis localized orthogonal decomposition. J. Comput. Phys. 295 (2015) 379–401. | MR | Zbl

[2] A. Anantharaman and C. Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization. Multiscale Model. Simul. 9 (2011) 513–544. | MR | Zbl

[3] A. Anantharaman and C. Le Bris, Elements of mathematical foundations for numerical approaches for weakly random homogenization problems. Commun. Comput. Phys. 11 (2012) 1103–1143. | MR | Zbl

[4] S. Armstrong, T. Kuusi and J.-C. Mourrat, Quantitative Stochastic Homogenization and Large-Scale Regularity. Volume 352 of Grundlehren der Mathematischen Wissenschaften. Springer, Cham (2019). | MR | Zbl

[5] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. | MR | Zbl

[6] A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119 (2011) 123–161. | MR | Zbl

[7] X. Blanc, C. Le Bris and F. Legoll, Some variance reduction methods for numerical stochastic homogenization. Philos. Trans. Roy. Soc. A 374 (2016) 20150168. | MR | Zbl

[8] K. A. Cliffe, M. B. Giles, R. Scheichl and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14 (2011) 3–15. | MR | Zbl

[9] Y. Efendiev, C. Kronsbein and F. Legoll, Multilevel Monte Carlo approaches for numerical homogenization. Multiscale Model. Simul. 13 (2015) 1107–1135. | MR | Zbl

[10] D. Elfverson, V. Ginting and P. Henning, On multiscale methods in Petrov-Galerkin formulation. Numer. Math. 131 (2015) 643–682. | MR | Zbl

[11] D. Elfverson, F. Hellman and A. Målqvist, A multilevel Monte Carlo method for computing failure probabilities. SIAM/ASA J. Uncertain. Quant. 4 (2016) 312–330. | MR | Zbl

[12] C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153. | MR | Zbl

[13] M. Feischl and D. Peterseim, Sparse compression of expected solution operators. SIAM J. Numer. Anal. 58 (2020) 3144–3164. | MR | Zbl

[14] J. Fischer, D. Gallistl and D. Peterseim, A priori error analysis of a numerical stochastic homogenization method. SIAM J. Numer. Anal. 59 (2021) 660–674. | MR | Zbl

[15] D. Gallistl and D. Peterseim, Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization. Multiscale Model. Simul. 15 (2017) 1530–1552. | MR | Zbl

[16] D. Gallistl and D. Peterseim, Numerical stochastic homogenization by quasilocal effective diffusion tensors. Commun. Math. Sci. 17 (2019) 637–651. | MR | Zbl

[17] A. Gloria, S. Neukamm and F. Otto, Quantitative estimates in stochastic homogenization for correlated coefficient fields. Preprint (2019). | arXiv | MR

[18] M. D. Gunzburger, C. G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23 (2014) 521–650. | MR | Zbl

[19] F. Hellman and T. Keil, Gridlod. https://github.com/fredrikhellman/gridlod. (2019). GitHub repository.

[20] F. Hellman and A. Målqvist, Numerical homogenization of elliptic PDEs with similar coefficients. Multiscale Model. Simul. 17 (2019) 650–674. | MR | Zbl

[21] F. Hellman, T. Keil and A. Målqvist, Numerical upscaling of perturbed diffusion problems. SIAM J. Sci. Comput. 42 (2020) A2014–A2036. | MR | Zbl

[22] P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth and M. Kästner, A diffuse modeling approach for embedded interfaces in linear elasticity. GAMM-Mitt. 43 (2020) e202000001. | MR | Zbl

[23] P. Henning and D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11 (2013) 1149–1175. | MR | Zbl

[24] C. Le Bris, Homogenization theory and multiscale numerical approaches for disordered media: some recent contributions In: Congrès SMAI 2013. Volume 45 of ESAIM Proc. Surveys. EDP Sci., Les Ulis (2014) 18–31. | MR | Zbl

[25] C. Le Bris and F. Thomines, A reduced basis approach for some weakly stochastic multiscale problems. Chin. Ann. Math. Ser. B 33 (2012) 657–672. | MR | Zbl

[26] C. Le Bris, F. Legoll and F. Thomines, Multiscale finite element approach for “weakly” random problems and related issues. ESAIM: M2AN 48 (2014) 815–858. | MR | Zbl | Numdam

[27] F. Legoll and W. Minvielle, A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization. Multiscale Model. Simul. 13 (2015) 519–550. | MR | Zbl

[28] G. J. Lord, C. E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (2014). | MR | Zbl

[29] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. | MR | Zbl

[30] A. Målqvist and D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposition. SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM), SIAM Spotlights (2020). | MR | Zbl

[31] M. Ohlberger and B. Verfürth, Localized orthogonal decomposition for two-scale Helmholtz-type problems. AIMS Math. 2 (2017) 458–478. | Zbl

[32] N. Ou, G. Lin and L. Jiang, A low-rank approximated multiscale method for PDEs with random coefficients. Multiscale Model. Simul. 18 (2020) 1595–1620. | MR | Zbl

[33] A. L. Teckentrup, R. Scheichl, M. B. Giles and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125 (2013) 569–600. | MR | Zbl

[34] Z. Zhang, M. Ci and T. Y. Hou, A multiscale data-driven stochastic method for elliptic PDEs with random coefficients. Multiscale Model. Simul. 13 (2015) 173–204. | MR

Cité par Sources :