Lowest-order equivalent nonstandard finite element methods for biharmonic plates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 41-78

The popular (piecewise) quadratic schemes for the biharmonic equation based on triangles are the nonconforming Morley finite element, the discontinuous Galerkin, the C0 interior penalty, and the WOPSIP schemes. Those methods are modified in their right-hand side F ∈ H−2(Ω) replaced by F ○ (JIM) and then are quasi-optimal in their respective discrete norms. The smoother JIM is defined for a piecewise smooth input function by a (generalized) Morley interpolation IM followed by a companion operator J. An abstract framework for the error analysis in the energy, weaker and piecewise Sobolev norms for the schemes is outlined and applied to the biharmonic equation. Three errors are also equivalent in some particular discrete norm from [Carstensen, Gallistl, Nataraj, ESAIM: M2AN 49 (2015) 977–990.] without data oscillations. This paper extends the work [Veeser and Zanotti, SIAM J. Numer. Anal. 56 (2018) 1621–1642] to the discontinuous Galerkin scheme and adds error estimates in weaker and piecewise Sobolev norms.

DOI : 10.1051/m2an/2021085
Classification : 65N30, 65N12, 65N50
Keywords: Biharmonic problem, best-approximation, $$ error estimates, companion operator, $$0, discontinuous Galerkin method, WOPSIP, Morley, comparison
@article{M2AN_2022__56_1_41_0,
     author = {Carstensen, Carsten and Nataraj, Neela},
     title = {Lowest-order equivalent nonstandard finite element methods for biharmonic plates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {41--78},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/m2an/2021085},
     mrnumber = {4376276},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021085/}
}
TY  - JOUR
AU  - Carstensen, Carsten
AU  - Nataraj, Neela
TI  - Lowest-order equivalent nonstandard finite element methods for biharmonic plates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 41
EP  - 78
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021085/
DO  - 10.1051/m2an/2021085
LA  - en
ID  - M2AN_2022__56_1_41_0
ER  - 
%0 Journal Article
%A Carstensen, Carsten
%A Nataraj, Neela
%T Lowest-order equivalent nonstandard finite element methods for biharmonic plates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 41-78
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021085/
%R 10.1051/m2an/2021085
%G en
%F M2AN_2022__56_1_41_0
Carstensen, Carsten; Nataraj, Neela. Lowest-order equivalent nonstandard finite element methods for biharmonic plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 41-78. doi: 10.1051/m2an/2021085

S. Agmon, Lectures on Elliptic Boundary Value Problems. Providence, RI: AMS Chelsea Publishing (2010) | MR | Zbl

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31, (1977) 45–59 | MR | Zbl | DOI

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, (1980) 556–581 | MR | Zbl | DOI

D. Braess, Finite Elements, Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edn. Cambridge: Cambridge (2007) | MR

S. C. Brenner, Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comp. 68, (1999) 25–53 | MR | Zbl | DOI

S. C. Brenner and L.-Y. Sung, C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22, (2005) 83–118 | MR | Zbl | DOI

S. C. Brenner, T. Gudi and L.-Y. Sung, A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electron. Trans. Numer. Anal. 37, (2010) 214–238 | MR | Zbl

S. C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254, (2013) 31–42 | MR | Zbl | DOI

C. Carstensen, A unifying theory of a posteriori finite element error control. Numer. Math. 100, (2005) 617–637 | MR | Zbl | DOI

C. Carstensen and D. Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126, (2014) 33–51 | MR | Zbl | DOI

C. Carstensen and F. Hellwig, Constants in discrete Poincaré and Friedrichs inequalities and discrete quasi-interpolation. CMAM 18, (2017) 433–450 | MR | DOI

C. Carstensen and J. Hu, A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, (2007) 473–502 | MR | Zbl | DOI

C. Carstensen and C. Merdon, Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, (2013) 74–94 | MR | Zbl | DOI

C. Carstensen and N. Nataraj, Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. SIAM J. Numer. Anal. 59, (2021) 696–719 | MR | DOI

C. Carstensen and N. Nataraj, Mathematics and computation of plates. Under preparation (2021)

C. Carstensen and N. Nataraj, A priori and a posteriori error analysis of the Crouzeix-Raviart and Morley FEM with original and modified right-hand sides. Comput. Methods Appl. Math. 21, (2021) 289–315 | MR | DOI

C. Carstensen and S. Puttkammer, How to prove the discrete reliability for nonconforming finite element methods. J. Comput. Math. 38, (2020) 142–175 | MR | DOI

C. Carstensen and S. Puttkammer, Direct guaranteed lower eigenvalue bounds with optimal a priori convergence rates for the bi-Laplacian. Preprint (2021) | arXiv | MR

C. Carstensen and H. Rabus, Axioms of adaptivity with separate marking for data resolution. SIAM J. Numer. Anal. 55, (2017) 2644–2665 | MR | DOI

C. Carstensen, M. Eigel, R. H. W. Hoppe and C. Löbhard, A review of unified a posteriori finite element error control. Numer. Math. Theory Methods Appl. 5, (2012) 509–558 | MR | Zbl | DOI

C. Carstensen, J. Gedicke and D. Rim, Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30, (2012) 337–353 | MR | Zbl | DOI

C. Carstensen, D. Gallistl and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68, (2014) 2167–2181 | MR | DOI

C. Carstensen, D. Gallistl and N. Nataraj, Comparison results of nonstandard P 2 finite element methods for the biharmonic problem. ESAIM: M2AN 49, (2015) 977–990 | MR | Zbl | Numdam | DOI

C. Carstensen, G. Mallik and N. Nataraj, A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations. IMA J. Numer. Anal. 39, (2019) 167–200 | MR

C. Carstensen, N. Nataraj, C. R. Gopikrishnan and S. Devika, Unifying a priori and a posteriori error analysis for the lowest-order FEMs in fourth-order semi-linear problems with trilinear nonlinearity. Under preparation, (2021)

P. G. Ciarlet, The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland (1978) | MR | Zbl

G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, (2002) 3669–3750 | MR | Zbl | DOI

X. Feng and O. A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp. 76, (2007) 1093–1117 (electronic) | MR | Zbl | DOI

D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35, (2015) 1779–1811 | MR | DOI

E. H. Georgoulis and P. Houston, Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29, (2009) 573–594 | MR | Zbl | DOI

E. H. Georgoulis, P. Houston and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31, (2011) 281–298 | MR | Zbl | DOI

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Berlin: Springer-Verlag (2001). Reprint of the 1998 edition | MR | Zbl

P. Grisvard, Singularities in Boundary Value Problems, Vol. RMA 22. Masson& Springer-Verlag (1992) | MR | Zbl

T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79, (2010) 2169–2189 | MR | Zbl | DOI

J.-L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Springer-Verlag, New York-Heidelberg (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. (1972), 181 | MR | Zbl

I. Mozolevski and E. Süli, A priori error analysis for the h p -version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3, (2003) 596–607 | MR | Zbl | DOI

I. Mozolevski, E. Süli and P. R. Bösing, h p -version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, (2007) 465–491 | MR | Zbl | DOI

J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs: Paris; Academia, Éditeurs, Prague (1967) | MR | Zbl

E. Süli and I. Mozolevski, h p -version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196, (2007) 1851–1863 | MR | Zbl | DOI

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Berlin; Heidelberg: Springer (2010) | MR

A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. I - Abstract theory. SIAM J. Numer. Anal. 56, (2018) 1621–1642 | MR | DOI

A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. III - Discontinuous Galerkin and other interior penalty methods. SIAM J. Numer. Anal. 56, (2018) 2871–2894 | MR | DOI

A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. II - Overconsistency and classical nonconforming elements. SIAM J. Numer. Anal. 57, (2019) 266–292 | MR | DOI

R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford: Numerical Mathematics and Scientific Computation. Oxford University Press (2013) | MR | Zbl | DOI

Cité par Sources :