The popular (piecewise) quadratic schemes for the biharmonic equation based on triangles are the nonconforming Morley finite element, the discontinuous Galerkin, the C0 interior penalty, and the WOPSIP schemes. Those methods are modified in their right-hand side F ∈ H−2(Ω) replaced by F ○ (JIM) and then are quasi-optimal in their respective discrete norms. The smoother JIM is defined for a piecewise smooth input function by a (generalized) Morley interpolation IM followed by a companion operator J. An abstract framework for the error analysis in the energy, weaker and piecewise Sobolev norms for the schemes is outlined and applied to the biharmonic equation. Three errors are also equivalent in some particular discrete norm from [Carstensen, Gallistl, Nataraj, ESAIM: M2AN 49 (2015) 977–990.] without data oscillations. This paper extends the work [Veeser and Zanotti, SIAM J. Numer. Anal. 56 (2018) 1621–1642] to the discontinuous Galerkin scheme and adds error estimates in weaker and piecewise Sobolev norms.
Keywords: Biharmonic problem, best-approximation, $$ error estimates, companion operator, $$0, discontinuous Galerkin method, WOPSIP, Morley, comparison
@article{M2AN_2022__56_1_41_0,
author = {Carstensen, Carsten and Nataraj, Neela},
title = {Lowest-order equivalent nonstandard finite element methods for biharmonic plates},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {41--78},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {1},
doi = {10.1051/m2an/2021085},
mrnumber = {4376276},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021085/}
}
TY - JOUR AU - Carstensen, Carsten AU - Nataraj, Neela TI - Lowest-order equivalent nonstandard finite element methods for biharmonic plates JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2022 SP - 41 EP - 78 VL - 56 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021085/ DO - 10.1051/m2an/2021085 LA - en ID - M2AN_2022__56_1_41_0 ER -
%0 Journal Article %A Carstensen, Carsten %A Nataraj, Neela %T Lowest-order equivalent nonstandard finite element methods for biharmonic plates %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2022 %P 41-78 %V 56 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021085/ %R 10.1051/m2an/2021085 %G en %F M2AN_2022__56_1_41_0
Carstensen, Carsten; Nataraj, Neela. Lowest-order equivalent nonstandard finite element methods for biharmonic plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 1, pp. 41-78. doi: 10.1051/m2an/2021085
, Lectures on Elliptic Boundary Value Problems. Providence, RI: AMS Chelsea Publishing (2010) | MR | Zbl
, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31, (1977) 45–59 | MR | Zbl | DOI
and , On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, (1980) 556–581 | MR | Zbl | DOI
, Finite Elements, Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edn. Cambridge: Cambridge (2007) | MR
, Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comp. 68, (1999) 25–53 | MR | Zbl | DOI
and , interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22, (2005) 83–118 | MR | Zbl | DOI
, and , A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electron. Trans. Numer. Anal. 37, (2010) 214–238 | MR | Zbl
, , and , A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254, (2013) 31–42 | MR | Zbl | DOI
, A unifying theory of a posteriori finite element error control. Numer. Math. 100, (2005) 617–637 | MR | Zbl | DOI
and , Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126, (2014) 33–51 | MR | Zbl | DOI
and , Constants in discrete Poincaré and Friedrichs inequalities and discrete quasi-interpolation. CMAM 18, (2017) 433–450 | MR | DOI
and , A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, (2007) 473–502 | MR | Zbl | DOI
and , Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, (2013) 74–94 | MR | Zbl | DOI
and , Adaptive Morley FEM for the von Kármán equations with optimal convergence rates. SIAM J. Numer. Anal. 59, (2021) 696–719 | MR | DOI
and , Mathematics and computation of plates. Under preparation (2021)
and , A priori and a posteriori error analysis of the Crouzeix-Raviart and Morley FEM with original and modified right-hand sides. Comput. Methods Appl. Math. 21, (2021) 289–315 | MR | DOI
and , How to prove the discrete reliability for nonconforming finite element methods. J. Comput. Math. 38, (2020) 142–175 | MR | DOI
and , Direct guaranteed lower eigenvalue bounds with optimal a priori convergence rates for the bi-Laplacian. Preprint (2021) | arXiv | MR
and , Axioms of adaptivity with separate marking for data resolution. SIAM J. Numer. Anal. 55, (2017) 2644–2665 | MR | DOI
, , and , A review of unified a posteriori finite element error control. Numer. Math. Theory Methods Appl. 5, (2012) 509–558 | MR | Zbl | DOI
, and , Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30, (2012) 337–353 | MR | Zbl | DOI
, and , A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl. 68, (2014) 2167–2181 | MR | DOI
, and , Comparison results of nonstandard finite element methods for the biharmonic problem. ESAIM: M2AN 49, (2015) 977–990 | MR | Zbl | Numdam | DOI
, and , A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations. IMA J. Numer. Anal. 39, (2019) 167–200 | MR
, , and , Unifying a priori and a posteriori error analysis for the lowest-order FEMs in fourth-order semi-linear problems with trilinear nonlinearity. Under preparation, (2021)
, The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland (1978) | MR | Zbl
, , , , and , Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, (2002) 3669–3750 | MR | Zbl | DOI
and , Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp. 76, (2007) 1093–1117 (electronic) | MR | Zbl | DOI
, Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35, (2015) 1779–1811 | MR | DOI
and , Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29, (2009) 573–594 | MR | Zbl | DOI
, and , An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31, (2011) 281–298 | MR | Zbl | DOI
and , Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Berlin: Springer-Verlag (2001). Reprint of the 1998 edition | MR | Zbl
, Singularities in Boundary Value Problems, Vol. RMA 22. Masson& Springer-Verlag (1992) | MR | Zbl
, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79, (2010) 2169–2189 | MR | Zbl | DOI
, , Non-homogeneous Boundary Value Problems and Applications. Vol. I. Springer-Verlag, New York-Heidelberg (1972). Translated from the French by , Die Grundlehren der mathematischen Wissenschaften, Band 181. (1972), 181 | MR | Zbl
and , A priori error analysis for the -version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3, (2003) 596–607 | MR | Zbl | DOI
, and ,-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, (2007) 465–491 | MR | Zbl | DOI
, Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs: Paris; Academia, Éditeurs, Prague (1967) | MR | Zbl
and , -version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196, (2007) 1851–1863 | MR | Zbl | DOI
, An Introduction to Sobolev Spaces and Interpolation Spaces. Berlin; Heidelberg: Springer (2010) | MR
and , Quasi-optimal nonconforming methods for symmetric elliptic problems. I - Abstract theory. SIAM J. Numer. Anal. 56, (2018) 1621–1642 | MR | DOI
and , Quasi-optimal nonconforming methods for symmetric elliptic problems. III - Discontinuous Galerkin and other interior penalty methods. SIAM J. Numer. Anal. 56, (2018) 2871–2894 | MR | DOI
and , Quasi-optimal nonconforming methods for symmetric elliptic problems. II - Overconsistency and classical nonconforming elements. SIAM J. Numer. Anal. 57, (2019) 266–292 | MR | DOI
, A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford: Numerical Mathematics and Scientific Computation. Oxford University Press (2013) | MR | Zbl | DOI
Cité par Sources :





