Diffusive limits of 2D well-balanced schemes for kinetic models of neutron transport
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2949-2980

Two-dimensional dissipative and isotropic kinetic models, like the ones used in neutron transport theory, are considered. Especially, steady-states are expressed for constant opacity and damping, allowing to derive a scattering S-matrix and corresponding "truly 2D well-balanced" numerical schemes. A first scheme is obtained by directly implementing truncated Fourier–Bessel series, whereas another proceeds by applying an exponential modulation to a former, conservative, one. Consistency with the asymptotic damped parabolic approximation is checked for both algorithms. A striking property of some of these schemes is that they can be proved to be both 2D well-balanced and asymptotic-preserving in the parabolic limit, even when setting up IMEX time-integrators: see Corollaries 3.4 and A.1. These findings are further confirmed by means of practical benchmarks carried out on coarse Cartesian computational grids.

DOI : 10.1051/m2an/2021077
Classification : 65M06, 35K57, 82D75
Keywords: Kinetic model of neutron transport, two-dimensional well-balanced, asymptotic-preserving scheme, Bessel functions, Laplace transforms, Pizzetti’s formula
@article{M2AN_2021__55_6_2949_0,
     author = {Bretti, Gabriella and Gosse, Laurent and Vauchelet, Nicolas},
     title = {Diffusive limits of {2D} well-balanced schemes for kinetic models of neutron transport},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2949--2980},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021077},
     mrnumber = {4347301},
     zbl = {1486.65096},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021077/}
}
TY  - JOUR
AU  - Bretti, Gabriella
AU  - Gosse, Laurent
AU  - Vauchelet, Nicolas
TI  - Diffusive limits of 2D well-balanced schemes for kinetic models of neutron transport
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2949
EP  - 2980
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021077/
DO  - 10.1051/m2an/2021077
LA  - en
ID  - M2AN_2021__55_6_2949_0
ER  - 
%0 Journal Article
%A Bretti, Gabriella
%A Gosse, Laurent
%A Vauchelet, Nicolas
%T Diffusive limits of 2D well-balanced schemes for kinetic models of neutron transport
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2949-2980
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021077/
%R 10.1051/m2an/2021077
%G en
%F M2AN_2021__55_6_2949_0
Bretti, Gabriella; Gosse, Laurent; Vauchelet, Nicolas. Diffusive limits of 2D well-balanced schemes for kinetic models of neutron transport. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2949-2980. doi: 10.1051/m2an/2021077

[1] R. E. Aamodt and K. M. Case, Useful identities for half-space problems in linear transport theory. Ann. Phys. 21 (1963) 284–301. | MR | Zbl | DOI

[2] M. Abramovitz and I. Stegun, Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC (1972).

[3] R. Bianchini and L. Gosse, A truly two-dimensional discretization of drift-diffusion equations on Cartesian grids. SIAM J. Numer. Anal. 56 (2018) 2845–2870. | MR | Zbl | DOI

[4] R. Bianchini, L. Gosse and E. Zuazua, A two-dimensional “`FLEA on the elephant’” phenomenon and its numerical visualization. SIAM Mult. Model. Simul. 17 (2019) 137–166. | MR | Zbl | DOI

[5] G. Birkhoff and I. Abu-Shumays, Harmonic solutions of transport equations. J. Math. Anal. App. 28 (1969) 211–221. | MR | Zbl | DOI

[6] G. Birkhoff and I. Abu-Shumays, Exact analytic solutions of transport equations, J. Math. Anal. App. 32 (1970) 468–481. | MR | Zbl | DOI

[7] G. Bretti and L. Gosse, Diffusive limit of a two-dimensional well-balanced approximation to a kinetic model of chemotaxis. SN Part. Differ. Equ. App. 2 (2021) 695. | MR | Zbl

[8] G. Bretti, L. Gosse and N. Vauchelet, -splines as diffusive limits of dissipative kinetic models. Vietnam J. Math. 49 (2021) 651–671. | MR | Zbl | DOI

[9] M. Briani, R. Natalini and G. Russo, Implicit–explicit numerical schemes for jump-diffusion processes. Calcolo 44 (2007) 33–57. | MR | Zbl | DOI

[10] C. Buet, B. Despres and G. Morel, Trefftz Discontinuous Galerkin basis functions for a class of Friedrichs systems coming from linear transport. Adv. Comput. Math. 46 (2020) 1–27. | MR | Zbl | DOI

[11] K. M. Case, Elementary solutions of the transport equation and their applications. Ann. Phys. 9 (1960) 1–23. | MR | Zbl | DOI

[12] K. M. Case and P. F. Zweifel, Linear Transport Theory. Addison-Wesley Series in Nuclear Engineering. Addison-Wesley Publishing Company (1967). | MR | Zbl

[13] J. G. Conlon, Fundamental solutions for the anisotropic neutron transport equation. Proc. R. Soc. Edinburgh 82A (1978) 325–350. | MR | Zbl | DOI

[14] B. Despres and C. Buet, The structure of well-balanced schemes for Friedrichs systems with linear relaxation. Appl. Math. Comput. 272 (2016) 440–459. | MR | Zbl

[15] R. Estrada, On Pizzetti’s formula. Asymptotic Anal. 111 (2019) 1–14. | MR | Zbl

[16] L. Flatto, Functions with a mean value property. J. Math. Mech. 10 (1961) 11–18. | MR | Zbl

[17] L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws: Exponential-fit, Well-balanced and Asymptotic-Preserving. Vol. 2 of SIMAI Springer Series. Springer-Verlag Italia (2013). | MR | Zbl | DOI

[18] L. Gosse, A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT Numer. Math. 55 (2015) 433–458. | MR | Zbl | DOI

[19] L. Gosse, A well-balanced scheme able to cope with hydrodynamic limits for linear kinetic models. Appl. Math. Lett. 42 (2015) 15–21. | MR | Zbl | DOI

[20] L. Gosse, Viscous equations treated with -splines and Steklov-Poincaré operator in two dimensions. In: Innovative Algorithms and Analysis. Springer, Cham (2017). | MR | Zbl | DOI

[21] L. Gosse, -splines and viscosity limits for well-balanced schemes acting on linear parabolic equations. Acta App. Math. 153 (2018) 101–124. | MR | Zbl | DOI

[22] L. Gosse and G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C.R. Math. Acad. Sci. Paris 334 (2002) 337–342. | MR | Zbl | DOI

[23] L. Gosse and N. Vauchelet, Numerical high-field limits in two-stream kinetic models and 1D aggregation equations. SIAM J. Sci. Comput. 38 (2016) A412–A434. | MR | Zbl | DOI

[24] L. Gosse and N. Vauchelet, Some examples of kinetic schemes whose diffusion limit is Il’in’s exponential-fitting. Numer. Math. 141 (2019) 627–680. | MR | Zbl | DOI

[25] L. Gosse and N. Vauchelet, A truly two-dimensional, asymptotic-preserving scheme for a discrete model of radiative transfer. SIAM J. Numer. Anal. 58 (2020) 1092–1116. | MR | Zbl | DOI

[26] H. Han and Z. Huang, The tailored finite point method. Comput. Methods Appl. Math. 14 (2014) 321–345. | MR | Zbl | DOI

[27] H. Han, Z. Huang and R. B. Kellogg, A tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comput. 36 (2008) 243–261. | MR | Zbl | DOI

[28] P.-L. Lions and G. Toscani, Diffusive limit for finite velocity Boltzmann kinetic models. Riv. Math. Iberoamericana 13 (1997) 473–513. | MR | Zbl | DOI

[29] Y. A. Melnikov and M. Y. Melnikov, Green’s Functions: Construction and Applications. Vol. 42 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, Boston (2012). | MR | Zbl

[30] S. Michalik, Summable solutions of some partial differential equations and generalised integral means. J. Math. Anal. Appl. 444 (2016) 1242–1259. | MR | Zbl | DOI

[31] C. W. Misner, Spherical harmonic decomposition on a cubic grid. Class. Quantum Grav. 21 (2004) S243. | MR | Zbl | DOI

[32] L. Pareschi and G. Russo, Implicit–explicit Runge-Kutta schemes and applications to hyperbolic system with relaxation. J. Sci. Comput. 25 (2005) 129–155. | MR | Zbl

[33] X. Yang, F. Golse, Z. Huang and S. Jin, Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks Heter. Media 1 (2006) 143–166. | MR | Zbl | DOI

[34] L. Zalcman, Mean values and differential equations. Israel J. Math. 14 (1973) 339–352. | MR | Zbl | DOI

Cité par Sources :