Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2899-2920

In this paper, we propose a local defect-correction method for solving the Steklov eigenvalue problem arising from the scalar second order positive definite partial differential equations based on the multilevel discretization. The objective is to avoid solving large-scale equations especially the large-scale Steklov eigenvalue problem whose computational cost increases exponentially. The proposed algorithm transforms the Steklov eigenvalue problem into a series of linear boundary value problems, which are defined in a multigrid space sequence, and a series of small-scale Steklov eigenvalue problems in a coarse correction space. Furthermore, we use the local defect-correction technique to divide the large-scale boundary value problems into small-scale subproblems. Through our proposed algorithm, we avoid solving large-scale Steklov eigenvalue problems. As a result, our proposed algorithm demonstrates significantly improved the solving efficiency. Additionally, we conduct numerical experiments and a rigorous theoretical analysis to verify the effectiveness of our proposed approach.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021076
Classification : 65N30, 65N25, 65L15, 65B99
Keywords: Steklov eigenvalue problem, local defect-correction, multilevel correction
@article{M2AN_2021__55_6_2899_0,
     author = {Xu, Fei and Chen, Liu and Huang, Qiumei},
     title = {Local defect-correction method based on multilevel discretization for {Steklov} eigenvalue problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2899--2920},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021076},
     mrnumber = {4347304},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021076/}
}
TY  - JOUR
AU  - Xu, Fei
AU  - Chen, Liu
AU  - Huang, Qiumei
TI  - Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2899
EP  - 2920
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021076/
DO  - 10.1051/m2an/2021076
LA  - en
ID  - M2AN_2021__55_6_2899_0
ER  - 
%0 Journal Article
%A Xu, Fei
%A Chen, Liu
%A Huang, Qiumei
%T Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2899-2920
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021076/
%R 10.1051/m2an/2021076
%G en
%F M2AN_2021__55_6_2899_0
Xu, Fei; Chen, Liu; Huang, Qiumei. Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2899-2920. doi: 10.1051/m2an/2021076

[1] R. A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl

[2] H. Ahn, Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations. Quart. Appl. Math. 39 (1981) 109–117. | MR | Zbl | DOI

[3] A. Andreev and T. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24 (2004) 309–322. | MR | Zbl | DOI

[4] M. G. Armentano, The effect of reduced integration in the Steklov eigenvalue problem. ESAIM: M2AN 38 (2004) 27–36. | MR | Zbl | Numdam | DOI

[5] M. G. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58 (2008) 593–601. | MR | Zbl | DOI

[6] I. Babuška and J. Osborn, Eigenvalue problems. In: . Handbook of Numerical Analysis, edited by P. G. Lions and P. G. Ciarlet. Vol. II Finite Element Methods (Part 1). North-Holland, Amsterdam (1991) 641–787. | MR | Zbl

[7] S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Courier Corporation (2005). | Zbl

[8] H. Bi, S. Ren and Y. Yang, Conforming finite element approximations for a fourth-order Steklov eigenvalue problem. Math. Probab. Eng. 2011 (2011) 1–13. | MR | Zbl

[9] H. Bi, Y. Yang and H. Li, Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 15 (2013) A2575–A2597. | MR | Zbl | DOI

[10] H. Bi, Z. Li and Y. Yang, Local and parallel finite element algorithms for the Steklov eigenvalue problem. Numer. Methods Part. Differ. Equ. 32 (2016) 399–417. | MR | DOI

[11] J. Bramble and J. Osborn, Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Elsevier (1972) 387–408. | MR | Zbl

[12] J. H. Bramble and J. E. Pasciak, New convergence estimates for multigrid algorithms. Math. Comput. 49 (1987) 311–329. | MR | Zbl | DOI

[13] J. H. Bramble and X. Zhang, The analysis of multigrid methods. Handb. Numer. Anal. 7 (2000) 173–415. | MR | Zbl

[14] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR | Zbl | DOI

[15] F. Cakoni, D. Colton, S. Meng and P. Monk, Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. | MR | DOI

[16] J. Canavati and A. Minzoni, A discontinuous Steklov problem with an application to water waves. J. Math. Anal. Appl. 69 (1979) 540–558. | MR | Zbl | DOI

[17] F. Chatelin, Spectral Approximation of Linear Operators. Academic Press, New York (1983). | MR | Zbl

[18] H. Chen, H. Xie and F. Xu, A full multigrid method for eigenvalue problems. J. Comput. Phys. 322 (2016) 747–759. | MR | DOI

[19] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | Zbl | MR

[20] X. Dai and A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46 (2008) 295–324. | MR | Zbl | DOI

[21] X. Dong, Y. He, H. Wei and Y. Zhang, Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv. Comput. Math. 44 (2018) 1295–1319. | MR | DOI

[22] G. Du and L. Zuo, Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73 (2017) 129–140. | MR | DOI

[23] G. Du, Y. Hou and L. Zuo, A modified local and parallel finite element method for the mixed Stokes-Darcy model. J. Math. Anal. Appl. 435 (2016) 1129–1145. | MR | DOI

[24] D. V. Evans and P. Mciver, Resonant frequencies in a container with a vertical baffle. J. Fluid Mech. 175 (1987) 295–307. | Zbl | DOI

[25] P. Grisvard, Elliptic problems in Nonsmooth Domains. Pitman, Boston, MA (1985). | MR | Zbl

[26] H. Han, Z. Guan and B. He, Boundary element approximation of Steklov eigenvalue problem. J. Chin. Univ. Appl. Math. Ser. A 9 (1994) 231–238. | MR | Zbl

[27] X. Han, Y. Li and H. Xie, A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods. Numer. Math. Theor. Methods Appl. 8 (2015) 383–405. | MR | DOI

[28] Y. He, J. Xu and A. Zhou, Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24 (2006) 227–238. | MR | Zbl

[29] Y. He, L. Mei, Y. Shang and J. Cui, Newton iterative parallel finite element algorithm for the steady Navier-Stokes equations. J. Sci. Comput. 44 (2010) 92–106. | MR | Zbl | DOI

[30] J. Huang and T. Lü, The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems. J. Comput. Math. 22 (2004) 719–726. | MR | Zbl

[31] S. Jia, H. Xie, M. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue problems. Sci. Chin. Math. 59 (2016) 2037–2048. | MR | DOI

[32] Q. Li, Q. Lin and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math. 58 (2013) 129–151. | MR | Zbl | DOI

[33] Y. Li, X. Han, H. Xie and C. You, Local and parallel finite element algorithm based on multilevel discretization for eigenvalue problem. Int. J. Numer. Anal. Model. 13 (2016) 73–89. | MR

[34] Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems. Math. Comput. 84 (2015) 71–88. | MR | Zbl | DOI

[35] Q. Liu and Y. Hou, Local and parallel finite element algorithms for time-dependent convection-diffusion equations. Appl. Math. Mech. Engl. Ed. 30 (2009) 787–794. | MR | Zbl | DOI

[36] Y. Ma, Z. Zhang and C. Ren, Local and parallel finite element algorithms based on two-grid discretization for the stream function form of Navier-Stokes equations. Appl. Math. Comput. 175 (2006) 786–813. | MR | Zbl

[37] F. Ma, Y. Ma and W. Wo, Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. 28 (2007) 27–35. | Zbl | DOI

[38] G. Monzón, A virtual element method for a biharmonic Steklov eigenvalue problem. Adv. Pure Appl. Math. 10 (2019) 1–13. | MR | DOI

[39] J. Planchard and B. Thomas, On the dynamical stability of cylinders placed in cross-flow. J. Fluids Struct. 7 (1993) 321–339. | DOI

[40] Y. Shang and K. Wang, Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algorithms 54 (2010) 195–218. | MR | Zbl | DOI

[41] Y. Shang, Y. He and Z. Luo, A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier-Stokes equations. Comput. Fluids 40 (2011) 249–257. | MR | Zbl | DOI

[42] Q. Tang and Y. Huang, Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70 (2017) 149–174. | MR | DOI

[43] W. J. Tang, Z. Guan and H. D. Han, Boundary element approximation of Steklov eigenvalue problem for helmholtz equation. J. Comput. Math. 2 (1998) 165–178. | MR | Zbl

[44] E.B. Watson and D. V. Evans, Resonant frequencies of a fluid in containers with internal bodies. J. Eng. Math. 25 (1991) 115–135. | MR | Zbl | DOI

[45] Z. Weng, S. Zhai and X. Feng, An improved two-grid finite element method for the Steklov eigenvalue problem. Appl. Math. Model. 39 (2015) 2962–2972. | MR | DOI

[46] H. Xie, A multigrid method for eigenvalue problem. J. Comput. Phys. 274 (2014) 550–561. | MR | DOI

[47] H. Xie, A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34 (2014) 592–608. | MR | Zbl | DOI

[48] J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581–613. | MR | Zbl | DOI

[49] F. Xu, A full multigrid method for the Steklov eigenvalue problem. Int. J. Comput. Math. 96 (2019) 2371–2386. | MR | DOI

[50] F. Xu and Q. Huang, Local and parallel multigrid method for nonlinear eigenvalue problems. J. Sci. Comput. 82 (2020) 1–23. | MR | Zbl

[51] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69 (1999) 881–909. | MR | Zbl | DOI

[52] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70 (2001) 17–25. | MR | Zbl | DOI

[53] J. Xu and A. Zhou, Local and parallel finite element algorithms for eigenvalue problems. Acta. Math. Appl. Sin. Engl. Ser. 18 (2002) 185–200. | MR | Zbl | DOI

[54] Y. Yang, Y. Zhang and H. Bi, Non-conforming Ciarlet-Raviart element approximation for Stekloff eigenvalues in inverse scattering. Adv. Comput. Math. 46 (2020) 1–25. | MR | Zbl | DOI

[55] J. Yu, F. Shi and H. Zheng, Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36 (2014) C547–C567. | MR | Zbl | DOI

[56] R. Zhao, Y. Yang and H. Bi, Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration. Numer. Methods Part. Differ. Equ. 35 (2019) 851–869. | MR | Zbl | DOI

[57] H. Zheng, J. Yu and F. Shi, Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput. 65 (2015) 512–532. | MR | Zbl | DOI

[58] H. Zheng, F. Shi, Y. Hou, J. Zhao, Y. Cao and R. Zhao, New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435 (2016) 1–19. | MR | Zbl | DOI

Cité par Sources :