An adaptive finite element DtN method for the elastic wave scattering by biperiodic structures
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2921-2947

Consider the scattering of a time-harmonic elastic plane wave by a bi-periodic rigid surface. The displacement of elastic wave motion is modeled by the three-dimensional Navier equation in an unbounded domain above the surface. Based on the Dirichlet-to-Neumann (DtN) operator, which is given as an infinite series, an exact transparent boundary condition is introduced and the scattering problem is formulated equivalently into a boundary value problem in a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is proposed to solve the discrete variational problem where the DtN operator is truncated into a finite number of terms. The a posteriori error estimate takes account of the finite element approximation error and the truncation error of the DtN operator which is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021074
Classification : 78A45, 65N30, 65N12, 65N50
Keywords: Elastic wave equation, scattering by biperiodic structures, adaptive finite element method, transparent boundary condition, DtN map, $$ error estimate
@article{M2AN_2021__55_6_2921_0,
     author = {Bao, Gang and Jiang, Xue and Li, Peijun and Yuan, Xiaokai},
     title = {An adaptive finite element {DtN} method for the elastic wave scattering by biperiodic structures},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2921--2947},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021074},
     mrnumber = {4347303},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021074/}
}
TY  - JOUR
AU  - Bao, Gang
AU  - Jiang, Xue
AU  - Li, Peijun
AU  - Yuan, Xiaokai
TI  - An adaptive finite element DtN method for the elastic wave scattering by biperiodic structures
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2921
EP  - 2947
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021074/
DO  - 10.1051/m2an/2021074
LA  - en
ID  - M2AN_2021__55_6_2921_0
ER  - 
%0 Journal Article
%A Bao, Gang
%A Jiang, Xue
%A Li, Peijun
%A Yuan, Xiaokai
%T An adaptive finite element DtN method for the elastic wave scattering by biperiodic structures
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2921-2947
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021074/
%R 10.1051/m2an/2021074
%G en
%F M2AN_2021__55_6_2921_0
Bao, Gang; Jiang, Xue; Li, Peijun; Yuan, Xiaokai. An adaptive finite element DtN method for the elastic wave scattering by biperiodic structures. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2921-2947. doi: 10.1051/m2an/2021074

[1] T. Arens, The scattering of plane elastic waves by a one-dimensional periodic surface. Math. Meth. Appl. Sci. 22 (1999) 55–72. | MR | Zbl | DOI

[2] T. Arens, A new integral equation formulation for the scattering of plane elastic waves by diffraction gratings. J. Integral Equ. Appl. 11 (1999) 275–297. | MR | Zbl | DOI

[3] I. Babuška and A. Aziz, Survey lectures on Mathematical Foundation of the Finite Element Method. In: Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, edited by A. Aziz. Academic Press, New York (1973) 5–359. | MR | Zbl

[4] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. | MR | Zbl | DOI

[5] G. Bao and H. Wu, On the convergence of the solutions of PML equations for Maxwell’s equations. SIAM J. Numer. Anal. 43 (2005) 2121–2143. | MR | Zbl

[6] G. Bao, P. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comput. 79 (2010) 1–34. | MR | Zbl | DOI

[7] J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | MR | Zbl | DOI

[8] J. H. Bramble and J. E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comput. 76 (2007) 597–614. | MR | Zbl | DOI

[9] J. H. Bramble, J. E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79 (2010) 2079–2101. | MR | Zbl | DOI

[10] O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries. J. Opt. Soc. Am. A 10 (1993) 1168–1175. | DOI

[11] O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries II Finitely conducting grating, Padé approximations and singularities. J. Opt. Soc. Am. A 10 (1993) 2307–2316. | DOI

[12] J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77 (2008) 673–698. | MR | Zbl | DOI

[13] Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43 (2005) 645–671. | MR | Zbl | DOI

[14] Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41 (2003) 799–826. | MR | Zbl | DOI

[15] Z. Chen, X. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems. Math. Comput. 85 (2016) 2687–2714. | MR | DOI

[16] W. Chew and W. Weedon, A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates. Microwave Opt. Tech. Lett. 13 (1994) 599–604. | DOI

[17] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (1998) 2061–1090. | MR | Zbl | DOI

[18] F. Collino and C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamics problem in anisotropic heterogeneous media. Geophysics 66 (2001) 294–307. | DOI

[19] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl | DOI

[20] J. Elschner and G. Hu, Scattering of plane elastic waves by three-dimensional diffraction gratings. Math. Meth. Appl. Sci. 22 (2012) 1150019. | MR | Zbl | DOI

[21] D. Givoli and J. B. Keller, Non-reflecting boundary conditions for elastic waves. Wave Motion 12 (1990) 261–279. | MR | Zbl | DOI

[22] F. D. Hastings, J. B. Schneider and S. L. Broschat, Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am. 100 (1996) 3061–3069. | DOI

[23] T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: convergence of the PML method. SIAM J. Math. Anal. 35 (2003) 547–560. | MR | Zbl | DOI

[24] G. C. Hsiao, N. Nigam, J. E. Pasiak and L. Xu, Error analysis of the DtN-FEM for the scattering problem in acoustic via Fourier analysis. J. Comput. Appl. Math. 235 (2011) 4949–4965. | MR | Zbl | DOI

[25] X. Jiang, P. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method. Commun. Comput. Phys. 13 (2013) 1227–1244. | MR | DOI

[26] X. Jiang, P. Li, J. Lv and W. Zheng, An adaptive finite element PML method for the elastic wave scattering problem in periodic structures. ESAIM: M2AN 51 (2017) 2017–2047. | MR | Numdam | DOI

[27] X. Jiang, P. Li, J. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition. J. Sci. Comput. 72 (2017) 936–956. | MR | DOI

[28] X. Jiang, P. Li, J. Lv and W. Zheng, Convergence of the PML solution for elastic wave scattering by biperiodic structures. Comm. Math. Sci. 16 (2018) 985–1014. | MR | DOI

[29] X. Jiang, P. Li, J. Lv, Z. Wang, H. Wu and W. Zheng, An adaptive finite element DtN method for Maxwell’s equation in biperiodic structures. Preprint (2018). | arXiv | MR

[30] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations. Computing 60 (1998) 229–241. | MR | Zbl | DOI

[31] P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering problem. Preprint (2019). | arXiv | MR

[32] P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures. Comput. Methods Appl. Mech. Eng. 360 (2020) 112722. | MR | DOI

[33] P. Li, Y. Wang and Y. Zhao, Inverse elastic surface scattering with near-field data. Inverse Prob. 31 (2015) 035009. | MR | DOI

[34] P. Monk, A posterior error indicators for Maxwell’s equations. J. Comput. Appl. Math. 100 (1998) 173–190. | MR | Zbl | DOI

[35] P. Morin, R. Nochetto and K. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658. | MR | Zbl | DOI

[36] PHG (Parallel Hierarchical Grid). http://lsec.cc.ac.cn/phg/.

[37] A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. | MR | Zbl | DOI

[38] R. Verfürth, A Review of A Posterior Error Estimation and Adaptive Mesh Refinement Techniques. Teubner, Stuttgart (1996). | Zbl

[39] Z. Wang, G. Bao, J. Li, P. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition. SIAM J. Numer. Anal. 53 (2015) 1585–1607. | MR | DOI

[40] B. Zhang and S. N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces. Math. Methods Appl. Sci. 26 (2003) 463–488. | MR | Zbl | DOI

Cité par Sources :