On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2705-2723

We deal with the numerical investigation of the local limit of nonlocal conservation laws. Previous numerical experiments seem to suggest that the solutions of the nonlocal problems converge to the entropy admissible solution of the conservation law in the singular local limit. However, recent analytical results state that (i) in general convergence does not hold because one can exhibit counterexamples; (ii) convergence can be recovered provided viscosity is added to both the local and the nonlocal equations. Motivated by these analytical results, we investigate the role of numerical viscosity in the numerical study of the local limit of nonlocal conservation laws. In particular, we show that Lax–Friedrichs type schemes may provide the wrong intuition and erroneously suggest that the solutions of the nonlocal problems converge to the entropy admissible solution of the conservation law in cases where this is ruled out by analytical results. We also test Godunov type schemes, less affected by numerical viscosity, and show that in some cases they provide an intuition more in accordance with the analytical results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021073
Classification : 35L65, 65M12
Keywords: Numerical viscosity, nonlocal conservation law, nonlocal traffic models, nonlocal-to-local limit
@article{M2AN_2021__55_6_2705_0,
     author = {Colombo, Maria and Crippa, Gianluca and Graff, Marie and Spinolo, Laura V.},
     title = {On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2705--2723},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021073},
     mrnumber = {4340167},
     zbl = {07477259},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021073/}
}
TY  - JOUR
AU  - Colombo, Maria
AU  - Crippa, Gianluca
AU  - Graff, Marie
AU  - Spinolo, Laura V.
TI  - On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2705
EP  - 2723
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021073/
DO  - 10.1051/m2an/2021073
LA  - en
ID  - M2AN_2021__55_6_2705_0
ER  - 
%0 Journal Article
%A Colombo, Maria
%A Crippa, Gianluca
%A Graff, Marie
%A Spinolo, Laura V.
%T On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2705-2723
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021073/
%R 10.1051/m2an/2021073
%G en
%F M2AN_2021__55_6_2705_0
Colombo, Maria; Crippa, Gianluca; Graff, Marie; Spinolo, Laura V. On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2705-2723. doi: 10.1051/m2an/2021073

[1] A. Aggarwal, R. M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53 (2015) 963–983. | MR | Zbl | DOI

[2] P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws. ESAIM: M2AN 49 (2015) 19–37. | MR | Zbl | Numdam | DOI

[3] F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity 24 (2011) 855–885. | MR | Zbl | DOI

[4] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. | MR | Zbl | DOI

[5] A. Bressan and W. Shen, On traffic flow with nonlocal flux: a relaxation representation. Arch. Rat. Mech. Anal. 237 (2020) 1213–1236. | MR | Zbl | DOI

[6] A. Bressan and W. Shen, Entropy admissibility of the limit solution for a nonlocal model of traffic flow. Comm. Math. Sci. 19 (2021) 1447–1450. | MR | Zbl | DOI

[7] F. A. Chiarello and P. Goatin, Non-local multi-class traffic flow models. Netw. Heterog. Media 14 (2019) 371–387. | MR | Zbl | DOI

[8] G. M. Coclite, J.-M. Coron, N. De Nitti, A. Keimer and L. Pflug, A general result on the approximation of local conservation laws by nonlocal conservation laws: the singular limit problem for exponential kernel. Preprint (2020). | arXiv | Zbl

[9] G. M. Coclite, N. De Nitti, A. Keimer and L. Pflug, Singular limits with vanishing viscosity for nonlocal conservation laws. Nonlinear Anal. Theory Methods App. 211 (2021) 112370. | MR | Zbl | DOI

[10] R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (2012) 1150023. | MR | Zbl | DOI

[11] M. Colombo, G. Crippa and L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes. Arch. Rat. Mech. Anal. 233 (2019) 1131–1167. | MR | Zbl | DOI

[12] M. Colombo, G. Crippa, E. Marconi and L. V. Spinolo, Local limit of nonlocal traffic models: convergence results and total variation blow-up. Ann. Inst. Henri Poincaré Anal. Non Linéaire 38 (2021) 1653–1666. | MR | Zbl | Numdam | DOI

[13] G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 523–537. | MR | Zbl | DOI

[14] J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media 13 (2018) 531–547. | MR | Zbl | DOI

[15] P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media 11 (2016) 107–121. | MR | Zbl | DOI

[16] A. Keimer and L. Pflug, On approximation of local conservation laws by nonlocal conservation laws. J. Math. Anal. App. 475 (2019) 1927–1955. | MR | Zbl | DOI

[17] S. N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. | MR | Zbl

[18] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). | MR | Zbl

[19] S. Osher, Riemann solvers, the entropy condition, and difference. SIAM J. Numer. Anal. 21 (1984) 217–235. | MR | Zbl | DOI

[20] E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43 (1984) 369–381. | MR | Zbl | DOI

[21] E. Tadmor, Chapter 18 – Entropy stable schemes. In: Handbook of Numerical Methods for Hyperbolic Problems, edited by R. Abgrall and C.-W. Shu. Vol. 17 of Handbook of Numerical Analysis. Elsevier (2016) 467–493. | MR

[22] K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions. Quart. Appl. Math. 57 (1999) 573–600. | MR | Zbl | DOI

Cité par Sources :