A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman–Forchheimer and double-diffusion equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2725-2758

We propose and analyze a new mixed finite element method for the nonlinear problem given by the coupling of the steady Brinkman–Forchheimer and double-diffusion equations. Besides the velocity, temperature, and concentration, our approach introduces the velocity gradient, the pseudostress tensor, and a pair of vectors involving the temperature/concentration, its gradient and the velocity, as further unknowns. As a consequence, we obtain a fully mixed variational formulation presenting a Banach spaces framework in each set of equations. In this way, and differently from the techniques previously developed for this and related coupled problems, no augmentation procedure needs to be incorporated now into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that the well-known Banach theorem, combined with classical results on nonlinear monotone operators and Babuška–Brezzi’s theory in Banach spaces, are applied to prove the unique solvability of the continuous and discrete systems. Appropriate finite element subspaces satisfying the required discrete inf-sup conditions are specified, and optimal a priori error estimates are derived. Several numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method.

DOI : 10.1051/m2an/2021072
Classification : 5N30, 65N12, 65N15, 35Q79, 76R05, 76D07
Keywords: Brinkman–Forchheimer equations, double-diffusion equations, fully-mixed formulation, fixed point theory, mixed finite element methods, $$ error analysis
@article{M2AN_2021__55_6_2725_0,
     author = {Caucao, Sergio and Gatica, Gabriel N. and Ortega, Juan P.},
     title = {A fully-mixed formulation in {Banach} spaces for the coupling of the steady {Brinkman{\textendash}Forchheimer} and double-diffusion equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2725--2758},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021072},
     mrnumber = {4344862},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021072/}
}
TY  - JOUR
AU  - Caucao, Sergio
AU  - Gatica, Gabriel N.
AU  - Ortega, Juan P.
TI  - A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman–Forchheimer and double-diffusion equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2725
EP  - 2758
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021072/
DO  - 10.1051/m2an/2021072
LA  - en
ID  - M2AN_2021__55_6_2725_0
ER  - 
%0 Journal Article
%A Caucao, Sergio
%A Gatica, Gabriel N.
%A Ortega, Juan P.
%T A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman–Forchheimer and double-diffusion equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2725-2758
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021072/
%R 10.1051/m2an/2021072
%G en
%F M2AN_2021__55_6_2725_0
Caucao, Sergio; Gatica, Gabriel N.; Ortega, Juan P. A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman–Forchheimer and double-diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2725-2758. doi: 10.1051/m2an/2021072

[1] A. K. Alzahrani, Importance of Darcy-Forchheimer porous medium in 3D convective flow of carbon nanotubes. Phys. Lett. A 382 (2018) 2938–2943. | MR | DOI

[2] I. Ambartsumyan, E. Khattatov, T. Nguyen and I. Yotov, Flow and transport in fractured poroelastic media. GEM Int. J. Geomath. 10 (2019) 34. | MR

[3] J. W. Barrett and W. B. Liu, Finite element approximation of the p -Laplacian. Math. Comput. 61 (1993) 523–537. | MR | Zbl

[4] G. A. Benavides, S. Caucao, G. N. Gatica and A. A. Hopper, A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem. Comput. Methods Appl. Mech. Eng. 371 (2020) 113285. | MR | DOI

[5] G. A. Benavides, S. Caucao, G. N. Gatica and A. A. Hopper, A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem. Preprint 2020-21, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile (2020). | MR

[6] M. M. Bhatti, A. Zeeshan, R. Ellahi and G. C. Shit, Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy–Brinkman–Forchheimer porous medium. Adv. Powder Tech. 29 (2018) 1189–1197. | DOI

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | MR | Zbl

[8] H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1 (1949) 27–34. | Zbl | DOI

[9] R. Bürger, P. E. Méndez and R. Ruiz-Baier, On 𝐇 ( div ) -conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal. 57 (2019) 1318–1343. | MR | DOI

[10] J. Camaño, C. Muñoz and R. Oyarzúa, Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48 (2018) 114–130. | MR | DOI

[11] J. Camaño, C. García and R. Oyarzúa, Analysis of a conservative mixed-FEM for the stationary Navier-Stokes problem. Numer. Methods Part. Differ. Equ. 37 (2021) 2895–2923. | MR | DOI

[12] S. Caucao and I. Yotov, A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations. IMA J. Numer. Anal. 41 (2021) 2708–2743. | MR | DOI

[13] S. Caucao, M. Discacciati, G. N. Gatica and R. Oyarzúa, A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. ESAIM: M2AN 54 (2020) 1689–1723. | MR | Numdam | DOI

[14] S. Caucao, G. N. Gatica, R. Oyarzúa and N. Sánchez, A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations. J. Sci. Comput. 85 (2020) 37. | MR | DOI

[15] S. Caucao, R. Oyarzúa and S. Villa-Fuentes, A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo 57 (2020) 39. | MR | DOI

[16] Çelebi, V. K. Kalantarov and D. Uğurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett. 19 (2006) 801–807. | MR | Zbl | DOI

[17] E. Colmenares, G. N. Gatica and R. Oyarzúa, Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. C. R. Math. Acad. Sci. Paris 354 (2016) 57–62. | MR | DOI

[18] E. Colmenares, G. N. Gatica and S. Moraga, A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM: M2AN 54 (2020) 1525–1568. | MR | Numdam | DOI

[19] E. Colmenares, G. N. Gatica, S. Moraga and R. Ruiz-Baier, A fully-mixed finite element method for the steady state Oberbeck-Boussinesq system. SMAI J. Comput. Math. 6 (2020) 125–157. | MR | DOI

[20] T. A. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30 (2004) 196–199. | MR | Zbl | DOI

[21] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | MR | Zbl | DOI

[22] J. Faulkner, B. X. Hu, S. Kish and F. Hua, Laboratory analog and numerical study of ground water flow and solute transport in a karst aquifer with conduit and matrix domains. J. Contam. Hydrol. 110 (2009) 34–44. | DOI

[23] P. Forchheimer, Wasserbewegung durch boden. Z. Ver. Deutsch Ing. 45 (1901) 1782–1788.

[24] G. N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). | MR | Zbl

[25] G. N. Gatica, G. C. Hsiao and S. Meddahi, Further developments on boundary-field equation methods for nonlinear transmission problems. J. Math. Anal. Appl. 502 (2021) 125262. | MR | DOI

[26] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | MR | Zbl | DOI

[27] F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl | DOI

[28] P. N. Kaloni and J. Guo, Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl. 204 (1996) 138–155. | MR | Zbl | DOI

[29] M. Ôtani and S. Uchida, Global solvability of some double-diffusive convection system coupled with Brinkman-Forchheimer equations. Lib. Math. (N.S.) 33 (2013) 79–107. | MR | Zbl

[30] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1994). | MR | Zbl | DOI

[31] S. Safi and S. Benissaad, Double-diffusive convection in an anisotropic porous layer using the Darcy–Brinkman–Forchheimer formulation. Arch. Mech. (Arch. Mech. Stos.) 70 (2018) 89–102. | MR

[32] Y. J. Zhuang, H. Z. Yu and Q. Y. Zhu, A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Trans. 115-B (2017) 670–694. | DOI

Cité par Sources :