Flux recovery for Cut Finite Element Method and its application in a posteriori error estimation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2759-2784

In this article, we aim to recover locally conservative and H(div) conforming fluxes for the linear Cut Finite Element Solution with Nitsche’s method for Poisson problems with Dirichlet boundary condition. The computation of the conservative flux in the Raviart–Thomas space is completely local and does not require to solve any mixed problem. The L2-norm of the difference between the numerical flux and the recovered flux can then be used as a posteriori error estimator in the adaptive mesh refinement procedure. Theoretically we also prove the global reliability and local efficiency. The theoretical results are verified in the numerical results. Moreover, in the numerical results we also observe optimal convergence rate for the flux error.

DOI : 10.1051/m2an/2021071
Classification : 68Q25, 68R10, 68U05
Keywords: CutFEM, $$ error estimation, flux recovery, adaptive mesh refinement
@article{M2AN_2021__55_6_2759_0,
     author = {Capatina, Daniela and He, Cuiyu},
     title = {Flux recovery for {Cut} {Finite} {Element} {Method} and its application in \protect\emph{a posteriori} error estimation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2759--2784},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021071},
     mrnumber = {4344863},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021071/}
}
TY  - JOUR
AU  - Capatina, Daniela
AU  - He, Cuiyu
TI  - Flux recovery for Cut Finite Element Method and its application in a posteriori error estimation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2759
EP  - 2784
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021071/
DO  - 10.1051/m2an/2021071
LA  - en
ID  - M2AN_2021__55_6_2759_0
ER  - 
%0 Journal Article
%A Capatina, Daniela
%A He, Cuiyu
%T Flux recovery for Cut Finite Element Method and its application in a posteriori error estimation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2759-2784
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021071/
%R 10.1051/m2an/2021071
%G en
%F M2AN_2021__55_6_2759_0
Capatina, Daniela; He, Cuiyu. Flux recovery for Cut Finite Element Method and its application in a posteriori error estimation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2759-2784. doi: 10.1051/m2an/2021071

[1] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45 (2007) 1777–1798. | MR | Zbl | DOI

[2] M. Ainsworth and R. Rankin, Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements. SIAM J. Numer. Anal. 46 (2008) 3207–3232. | MR | Zbl | DOI

[3] M. Ainsworth and O. J. Tinsley, A Posteriori Error Estimation in Finite Element Analysis, Vol 37. John Wiley & Sons (2011). | Zbl

[4] S. Badia, F. Verdugo and A. F. Martín, The aggregated unfitted finite element method for elliptic problems. Comput. Methods Appl. Mech. Eng. 336 (2018) 533–553. | MR | DOI

[5] J. W. Barrett and C. M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309–325. | MR | Zbl | DOI

[6] P. Bastian and B. Rivière, Superconvergence and H ( div ) projection for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 42 (2003) 1043–1057. | MR | Zbl | DOI

[7] R. Becker, D. Capatina and R. Luce, Local flux reconstructions for standard finite element methods on triangular meshes. SIAM J. Numer. Anal. 54 (2016) 2684–2706. | MR | DOI

[8] S. Bertoluzza, M. Ismail and B. Maury, The fat boundary method: semi-discrete scheme and some numerical experiments. In: Domain Decomposition Methods in Science and Engineering. Vol. 40 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (2005) 513–520. | MR | Zbl | DOI

[9] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Vol 44. Springer (2013). | MR | Zbl | DOI

[10] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p -robust. Comput. Methods Appl. Mech. Eng. 198 (2009) 1189–1197. | MR | Zbl | DOI

[11] D. Braess, T. Fraunholz and R. H. Hoppe, An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52 (2014) 2121–2136. | MR | Zbl | DOI

[12] E. Burman, Ghost penalty. C. R. Math. Acad. Sci. Paris 348 (2010) 1217–1220. | MR | Zbl | DOI

[13] E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56 (2018) 1525–1546. | MR | DOI

[14] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 199 (2010) 2680–2686. | MR | Zbl | DOI

[15] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62 (2012) 328–341. | MR | Zbl | DOI

[16] E. Burman, P. Hansbo and M. G. Larson, A cut finite element method with boundary value correction. Math. Comput. 87 (2018) 633–657. | MR | DOI

[17] E. Burman, C. He and M. G. Larson, A posteriori error estimates with boundary correction for a cut finite element method. IMA J. Numer. Anal. (2020) draa085. | MR

[18] Z. Cai and S. Zhang, Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal. 50 (2012) 151–170. | MR | Zbl | DOI

[19] Z. Cai, C. He and S. Zhang, Residual-based a posteriori error estimate for interface problems: nonconforming linear elements. Math. Comput. 86 (2017) 617–636. | MR | DOI

[20] Z. Cai, C. He and S. Zhang, Generalized Prager-Synge identity and robust equilibrated error estimators for discontinuous elements. J. Comput. Appl. Math. 398 (2021) 11673. | MR

[21] D. A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. In: Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | MR | Zbl | DOI

[22] P. Di Stolfo, A. Rademacher and A. Schröder, Dual weighted residual error estimation for the finite cell method. J. Numer. Math. 27 (2019) 101–122. | MR | DOI

[23] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl | DOI

[24] A. Ern and M. Vohralik, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058–1081. | MR | DOI

[25] A. Ern, S. Nicaise and M. Vohralik, An accurate 𝐇 ( div ) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. 345 (2007) 709–712. | MR | Zbl | DOI

[26] D. Estep, M. Pernice, S. Tavener and H. Wang, A posteriori error analysis for a cut cell finite volume method. Comput. Methods Appl. Mech. Eng. 200 (2011) 2768–2781. | MR | Zbl | DOI

[27] R. Franke, A critical comparison of some methods for interpolation of scattered data, Tech. Report, Navel Postgraduate School, Monterey, CA (1979).

[28] R. Glowinski and T.-W. Pan, Error estimates for fictitious domain/penalty/finite element methods. Calcolo 29 (1992) 125–141. | MR | Zbl | DOI

[29] P. Grisvard, Elliptic problems in nonsmooth domains. In: Vol. 69 of Classics in Applied Mathematics. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl

[30] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. | MR | Zbl | DOI

[31] J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47 (2009) 1474–1499. | MR | Zbl | DOI

[32] P. Huang, H. Wu and Y. Xiao, An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 323 (2017) 439–460. | MR | DOI

[33] A. Johansson and M. G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123 (2013) 607–628. | MR | Zbl | DOI

[34] K.-Y. Kim, Flux reconstruction for the P 2 nonconforming finite element method with application to a posteriori error estimation. Appl. Numer. Math. 62 (2012) 1701–1717. | MR | Zbl | DOI

[35] L. D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493–496. | MR | Zbl | DOI

[36] A. Massing, M. G. Larson, A. Logg and M. E. Rognes, A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61 (2014) 604–628. | MR | Zbl | DOI

[37] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. | MR | Zbl | DOI

[38] L. H. Odsæter, M. F. Wheeler, T. Kvamsdal and M. G. Larson, Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media. Comput. Methods Appl. Mech. Eng. 315 (2017) 799–830. | MR | DOI

[39] H. Sun, D. Schillinger and S. Yuan, Implicit a posteriori error estimation in cut finite elements. Comput. Mech. 65 (2020) 967–988. | MR | DOI

[40] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67–83. | MR | Zbl | DOI

Cité par Sources :