A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2679-2703

We propose a semismooth Newton method for non-Newtonian models of incompressible flow where the constitutive relation between the shear stress and the symmetric velocity gradient is given implicitly; this class of constitutive relations captures for instance the models of Bingham and Herschel–Bulkley. The proposed method avoids the use of variational inequalities and is based on a particularly simple regularisation for which the (weak) convergence of the approximate stresses is known to hold. The system is analysed at the function space level and results in mesh-independent behaviour of the nonlinear iterations.

DOI : 10.1051/m2an/2021068
Classification : 65N30, 65J99, 76A05
Keywords: Semismooth Newton methods, non-Newtonian, Bingham fluids, finite element method
@article{M2AN_2021__55_6_2679_0,
     author = {Gazca-Orozco, Pablo Alexei},
     title = {A semismooth {Newton} method for implicitly constituted {non-Newtonian} fluids and its application to the numerical approximation of {Bingham} flow},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2679--2703},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/m2an/2021068},
     mrnumber = {4337453},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021068/}
}
TY  - JOUR
AU  - Gazca-Orozco, Pablo Alexei
TI  - A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 2679
EP  - 2703
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021068/
DO  - 10.1051/m2an/2021068
LA  - en
ID  - M2AN_2021__55_6_2679_0
ER  - 
%0 Journal Article
%A Gazca-Orozco, Pablo Alexei
%T A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 2679-2703
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021068/
%R 10.1051/m2an/2021068
%G en
%F M2AN_2021__55_6_2679_0
Gazca-Orozco, Pablo Alexei. A semismooth Newton method for implicitly constituted non-Newtonian fluids and its application to the numerical approximation of Bingham flow. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 6, pp. 2679-2703. doi: 10.1051/m2an/2021068

[1] M. S. Alnaes, A. Logg, K. B. Ølgaard, M. E. Rognes and G. N. Wells, Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. 40 (2014) 1–37. | MR | Zbl | DOI

[2] P. R. Amestoy, I. S. Duff, J. Koster and J. Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. | MR | Zbl | DOI

[3] A. Aposporidis, E. Haber, M. A. Olshanskii and A. Veneziani, A mixed formulation of the Bingham fluid flow problem: analysis and numerical solution. Comput. Methods Appl. Mech. Eng. 200 (2011) 2434–2446. | MR | Zbl | DOI

[4] N. J. Balmforth, I. A. Frigaard and G. Ovarlez, Yielding to stress: recent developments in viscoplastic fluid mechanics. Ann. Rev. Fluid Mech. 46 (2014) 121–146. | MR | Zbl | DOI

[5] S. Basu and U. S. Shivhare, Rheological, textural, microstructural, and sensory properties of sorbitol-substituted mango jam. Food Bioprocess. Technol. 6 (2013) 1401–1413. | DOI

[6] M. Bercovier and M. Engelman, A finite-element method for incompressible non-Newtonian flows. J. Comput. Phys. 36 (1980) 313–326. | MR | Zbl | DOI

[7] R. B. Bird, G. C. Dal and B. J. Yarusso, The rheology and flow of viscoplastic materials. Rev. Chem. Eng. 1 (1983) 1–70. | DOI

[8] J. Blechta, J. Málek and K. R. Rajagopal, On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion. SIAM J. Math. Anal. 52 (2020) 1232–1289. | MR | DOI

[9] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer (2013). | MR | Zbl | DOI

[10] M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2 (2009) 109–136. | MR | Zbl | DOI

[11] M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012) 2756–2801. | MR | Zbl | DOI

[12] M. Bulíček, J. Burczak and S. Schwarzacher, A unified theory for some non-Newtonian fluids under singular focing. SIAM J. Math. Anal. 48 (2016) 4241–4267. | MR | DOI

[13] M. Bulíček, J. Málek and E. Maringová, On nonlinear problems of parabolic type with implicit constitutive equations involving flux. Math. Models Methods Appl. Sci. (2021) 1–52. DOI: . | DOI | MR

[14] X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for non-differentiable operator equations. SIAM J. Numer. Anal. 38 (2000) 1200–1216. | MR | Zbl | DOI

[15] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). | MR | Zbl

[16] J. C. De Los Reyes and S. G. Andrade, Numerical simulation of two-dimensional Bingham fluid flow by semismooth Newton methods. J. Comput. Appl. Math. 235 (2010) 11–32. | MR | Zbl | DOI

[17] J. C. De Los Reyes and M. Hintermüller, A duality based semismooth Newton framework for solving variational inequalities of the second kind. Interfaces Free Boundaries 13 (2011) 437–462. | MR | Zbl | DOI

[18] L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015. | MR | Zbl | DOI

[19] Y. Dimakopoulos, G. Makrigiorgos, G. C. Georgiou and J. Tsamopoulos, The PAL (Penalized Augmented Lagrangian) method for computing viscoplastic flows: a new fast converging scheme. J. Non-Newt. Fluid Mech. 256 (2018) 23–41. | MR | DOI

[20] P. E. Farrell and P. A. Gazca-Orozco, Augmented Lagrangian preconditioner for implicitly-constituted non-Newtonian incompressible flow. SIAM J. Sci. Comput. 42 (2020) B1329–B1349. | MR | DOI

[21] P. E. Farrell, P. A. Gazca-Orozco and E. Süli, Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation. SIAM J. Numer. Anal. 58 (2020) 757–787. | MR | DOI

[22] I. A. Frigaard and C. Nouar, On the usage of viscosity regularisation methods for viscoplastic fluid flow computation. J. Non-Newt. Fluid Mech. 127 (2005) 1–26. | Zbl | DOI

[23] M. Fuchs and G. Seregin, Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening. Math. Methods Appl. Sci. 22 (1999) 317–351. | MR | Zbl | DOI

[24] M. Fuchs and G. Seregin, Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Math. 1749. Springer Verlag (2000). | MR | Zbl

[25] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Verlag (1986). | MR | Zbl | DOI

[26] R. Glowinski and A. Wachs, On the numerical simulation of viscoplastic fluid flow. In: Vol. XVI of Handbook of Numerical Analysis. Numerical Methods for Non-Newtonian Fluids. North Holland (2010) 483–718. | Zbl

[27] H. Goldberg, W. Kampowsky and F. Tröltzsch, On Nemytskij operators in L p -spaces of abstract functions. Math. Nachr. 155 (1992) 127–140. | MR | Zbl | DOI

[28] P. P. Grinevich and M. A. Olshanskii, An iterative method for the Stokes-type problem with variable viscosity. SIAM J. Sci. Comput. 31 (2009) 3959–3978. | MR | Zbl | DOI

[29] L. H. Luu and Y. Forterre, Drop impact of yield-stress fluids. J. Fluid Mech. 632 (2009) 301–327. | Zbl | DOI

[30] E. Maringová and J. Žabenský, On a Navier–Stokes–Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions. Nonlinear Anal. Real World Appl. 41 (2018) 152–178. | MR | DOI

[31] A. Marly and P. Vigneaux, Augmented Lagrangian simulations study of yield-stress fluid flows in expansion-contraction and comparisons with physical experiments. J. Non-Newtonian Fluid Mech. 239 (2017) 35–52. | MR | DOI

[32] R. Mifflin, Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15 (1977) 959–972. | MR | Zbl | DOI

[33] A. Putz, I. A. Frigaard and D. M. Martínez, On the lubrication paradox and the use of regularisation methods for lubrication flows. J. Non-Newt. Fluid Mech. 163 (2009) 62–77. | Zbl | DOI

[34] L. Q. Qi, Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18 (1993) 227–244. | MR | Zbl | DOI

[35] L. Q. Qi and J. Sun, A nonsmooth version of Newton’s method. Math. Program. 58 (1993) 353–367. | MR | Zbl | DOI

[36] J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids. Ph.D. thesis, Pennsylvania State University (1994). | MR

[37] K. R. Rajagopal, On implicit constitutive theories. Appl. Math. 48 (2003) 279–319. | MR | Zbl | DOI

[38] K. R. Rajagopal, On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006) 243–249. | MR | Zbl | DOI

[39] K. R. Rajagopal and A. R. Srinivasa, On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59 (2008) 715–729. | MR | Zbl | DOI

[40] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T. Bercea, G. R. Markall and P. H. J. Kelly, Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43 (2016) 1–27. | MR | DOI

[41] P. Saramito, A damped Newton algorithm for computing viscoplastic fluid flows. J. Non-Newt. Fluid Mech. 238 (2016) 6–15. | MR | DOI

[42] P. Saramito and A. Wachs, Progress in numerical simulation of yield stress fluid flows. Rheol. Acta 56 (2017) 211–230. | DOI

[43] A. Schiela, A simplified approach to semismooth Newton methods in function space. SIAM J. Optim. 19 (2008) 1417–1432. | MR | Zbl | DOI

[44] E. Süli and T. Tscherpel, Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids. IMA J. Numer. Anal. 40 (2021) 801–849. | MR | DOI

[45] A. Syrakos, G. C. Georgiou and A. N. Alexandrou, Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method. J. Non-Newtonian Fluid Mech. 195 (2013) 19–31. | DOI

[46] T. Treskatis, A. Roustaei, I. Frigaard and A. Wachs, Practical guidelines for fast, efficient and robust simulations of yield-stress flows without regularisation: a study of accelerated proximal gradient and augmented Lagrangian methods. J. Non-Newtonian Fluid Mech. 262 (2018) 149–164. | MR | DOI

[47] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, American Mathematical Soc. Vol. 112 (2010). | MR | Zbl

[48] T. Tscherpel, FEM for the unsteady flow of implicitly constituted incompressible fluids. Ph.D. thesis. University of Oxford (2018).

[49] M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2003) 805–841. | MR | Zbl | DOI

[50] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization. SIAM (2011). | MR | Zbl

Cité par Sources :